

DME – Interface

Release 1.3.1.draft

I++ DME Version 1.3.1.draft 1

Contents:

1 I++ WORKING GROUP INFORMATION ... 8

1.1 This specification was created with the assistance of.. 8

1.2 The goal ... 8

1.3 Sub Working group I++ DME Interface (Dimensional Measuring Equipment) 8

1.4 Requirement ... 8

1.5 What is the intention of the specification ? .. 8

1.6 Schedule steps ... 10

1.7 History ... 10

1.8 Links to important sites ... 11

2 PHYSICAL SYSTEM LAYOUT .. 12

2.1 DME-Interface Implementations.. 13

2.2 DME-Interface Model.. 13

2.3 Logical System Layout... 14

2.4 DME-Interface and Subsystems ... 15
2.4.1 Application .. 15
2.4.2 Monitor .. 15
2.4.3 Diagnostics .. 15
2.4.4 Info... 15

3 HIERARCHY OF COMMUNICATION .. 17

3.1 Layers .. 17

3.2 Examples of basic use cases ... 18
3.2.1 Sequence Diagram: StartSession, EndSession .. 18
3.2.2 Sequence Diagram: Standard Queue Communication .. 18
3.2.3 Sequence Diagram: Event, Fast Queue Communication (Multiple Shot Events) ... 19
3.2.4 Sequence Diagram: Handling of Unsolicited Errors ... 20

4 EVENTS ... 21

4.1 Transaction events, syntax .. 21

4.2 One shot events ... 22

4.3 Multiple shot events ... 22

I++ DME Version 1.3.1.draft 2

4.4 Server events... 22

5 OBJECT MODEL ... 23

5.1 Explanation ... 23

5.2 Reduced Object Model... 24

5.3 Full Object Model... 25

5.4 Packaging for visualization ... 26

5.5 Contents of server... 26

5.6 Contents of dme.. 27

5.7 Contents of cartcmm.. 28

5.8 Contents of cartcmmwithrotarytable ... 28

5.9 Contents of toolchanger ... 29

5.10 Contents of lib and unspecified.. 30

6 PROTOCOL ... 31

6.1 Communication .. 31
6.1.1 Character set .. 31
6.1.2 Units... 31
6.1.3 Enumeration... 31
6.1.4 Definitions used in formats.. 31

6.1.4.1 Production Language .. 32
6.1.4.2 Syntax ... 32

6.2 Protocol Basics.. 35
6.2.1 Tags ... 35
6.2.2 General line layout... 36

6.2.2.1 CommandLine... 36
6.2.2.2 ResponseLine.. 37
6.2.2.3 Definitions... 37

6.2.3 Transactions... 37
6.2.3.1 Example .. 38

6.2.4 Events .. 39
6.2.4.1 Examples... 39

6.2.5 Errors ... 40

6.3 Method Syntax.. 41
6.3.1 Server Methods.. 41

6.3.1.1 StartSession() .. 41
6.3.1.2 EndSession() ... 41
6.3.1.3 StopDaemon(..) ... 42
6.3.1.4 StopAllDaemons() .. 42

I++ DME Version 1.3.1.draft 3

6.3.1.5 AbortE() .. 42
6.3.1.6 GetErrorInfo(..) ... 43
6.3.1.7 ClearAllErrors() .. 43
6.3.1.8 Information for handling properties.. 45
6.3.1.9 GetProp(..)... 45
6.3.1.10 GetPropE(..).. 45
6.3.1.11 SetProp(..) ... 45
6.3.1.12 EnumProp(..) .. 45
6.3.1.13 EnumAllProp(..) ... 46

6.3.2 DME Methods ... 47
6.3.2.1 Home() .. 47
6.3.2.2 IsHomed() ... 47
6.3.2.3 EnableUser() ... 47
6.3.2.4 DisableUser() .. 47
6.3.2.5 IsUserEnabled() .. 48
6.3.2.6 OnPtMeasReport(..) .. 48
6.3.2.7 OnMoveReportE(..) .. 48
6.3.2.8 GetMachineClass() ... 49
6.3.2.9 GetErrStatusE()... 49
6.3.2.10 GetXtdErrStatus() ... 49
6.3.2.11 Get(..).. 50
6.3.2.12 GoTo(..) .. 50
6.3.2.13 PtMeas(..).. 51
6.3.2.14 Information for Tool Handling ... 52
6.3.2.15 Tool() .. 53
6.3.2.16 FindTool(..)... 53
6.3.2.17 FoundTool().. 53
6.3.2.18 ChangeTool(..).. 53
6.3.2.19 SetTool(..) ... 53
6.3.2.20 AlignTool(..) ... 54
6.3.2.21 GoToPar() ... 54
6.3.2.22 PtMeasPar() .. 55
6.3.2.23 EnumTools() ... 55
6.3.2.24 Q()... 55
6.3.2.25 ER() .. 56

6.3.3 CartCMM Methods.. 57
6.3.3.1 SetCoordSystem(..) ... 58
6.3.3.2 GetCoordSystem() .. 58
6.3.3.3 GetCsyTransformation(..) ... 58
6.3.3.4 SetCsyTransformation(..).. 59
6.3.3.5 X() ... 59
6.3.3.6 Y() ... 59
6.3.3.7 Z() ... 60
6.3.3.8 IJK() .. 60
6.3.3.9 X(..) ... 60
6.3.3.10 Y(..)... 60
6.3.3.11 Z(..) ... 61
6.3.3.12 IJK(..).. 61
6.3.3.13 R() ... 61

6.3.4 ToolChanger Methods ... 62
6.3.5 Tool Methods (Instance of class KTool) ... 62

I++ DME Version 1.3.1.draft 4

6.3.5.1 GoToPar() ... 62
6.3.5.2 PtMeasPar()... 62
6.3.5.3 ReQualify() ... 62

6.3.6 GoToPar Block .. 62
6.3.7 PtMeasPar Block ... 63
6.3.8 A(), B(), C() ... 64
6.3.9 A(..), B(..), C(..) ... 64

7 ADDITIONAL DIALOG EXAMPLES.. 65

7.1 StartSession... 65

7.2 Move 1 axis.. 65

7.3 Probe 1 axis ... 65

7.4 Move more axes in workpiece coordinate system ... 66

7.5 Probe with more axis.. 66

7.6 Set property .. 66

7.7 Get, read property.. 67

7.8 EnumAllProp.. 68

8 ERROR HANDLING... 69

8.1 Classification of Errors.. 69

8.2 List of I++ predefined errors... 69

9 MISCELLANEOUS INFORMATION .. 71

9.1 Coordination of company related extensions... 71

9.2 Initialization of TCP/IP protocol-stack .. 71

9.3 Closing TCP/IP connection ... 71

9.4 EndSession and StartSession... 71

9.5 Pre-defined Server events.. 71
9.5.1 KeyPress .. 72
9.5.2 Clearance or intermediate point set ... 72
9.5.3 Pick manual point .. 72
9.5.4 Change Tool request .. 72
9.5.5 Set property request ... 72
9.5.6 Additional defined keys... 72

9.6 Reading part temperature ... 73

I++ DME Version 1.3.1.draft 5

10 MULTIPLE ARM SUPPORT ... 74

11 SCANNING ... 75

11.1 Preliminaries ... 75
11.1.1 Hints: .. 75
11.1.2 OnScanReport(..).. 75

11.2 Scanning known contour.. 76
11.2.1 ScanOnCircleHint(..).. 76
11.2.2 ScanOnCircle(..)... 76
11.2.3 ScanOnLineHint(..) .. 77
11.2.4 ScanOnLine(..) ... 77

11.3 Scan unknown contour ... 79
11.3.1 ScanUnknownHint(..)... 79
11.3.2 ScanInPlaneEndIsSphere(..)... 79
11.3.3 ScanInPlaneEndIsPlane(..) ... 80
11.3.4 ScanInPlaneEndIsCyl(..) .. 82
11.3.5 ScanInCylEndIsSphere(..) .. 83
11.3.6 ScanInCylEndIsPlane(..) .. 84

11.4 Scanning Examples ... 87
11.4.1 Scanning known contour circle .. 87
11.4.2 Scanning unknown contour.. 87

12 ROTARY TABLE... 89

12.1 AlignPart(..) ... 89

APPENDIX A C++ AND HEADER FILES FOR EXPLANATION 90

A.1 \main\main.cpp .. 90

A.2 \server ... 90
A.2.1 \server\server.h.. 90
A.2.2 \server\part.h ... 91
A.2.3 \server\server.cpp .. 91

A.3 \dme... 93
A.3.1 \dem\dme.h.. 93

A.4 \cartcmm... 94
A.4.1 \cartcmm\cartcmm.h ... 94
A.4.2 \cartcmm\eulerw.cpp... 95

A.5 \cartcmmwithrottbl .. 96
A.5.1 \cartcmmwithrottbl\cartcmmwithrottbl.h.. 96

A.6 \toolchanger.. 96
A.6.1 \toolchanger\toolchanger.h.. 96
A.6.2 \toolchanger\tool.h .. 98

I++ DME Version 1.3.1.draft 6

A.6.3 \toolchanger\toolab.h... 99
A.6.4 \toolchanger\toolabc.h... 99
A.6.5 \toolchanger\gotoparams.h.. 100
A.6.6 \toolchanger\ptmeaspars.h... 100
A.6.7 \toolchanger\param.h... 101

A.7 Most important of lib .. 102
A.7.1 \lib\axis.h... 102
A.7.2 \lib\eulerw.h .. 103
A.7.3 \lib\tag.h .. 103
A.7.4 \lib\ipptypedef.h .. 103
A.7.5 \lib\ippbaseclasses.h.. 104

I++ DME Version 1.3.1.draft 7

1 I++ Working Group Information

1.1 This specification was created with the assistance of

Hans-Martin Biedenbach, AUDI AG
Josef Brunner, BMW
Kai Gläsner, DaimlerChrysler
Dr. Günter Moritz, Messtechnik Wetzlar
Jörg Pfeifle, DaimlerChrysler
Josef Resch, Zeiss IMT

I++ is a working group of five European Car manufacturers (Audi, BMW, DaimlerChrysler,
VW and Volvo).

1.2 The goal

The I++ working group defined a requirement specification with the goal to achieve a new
programming system for inspection devices (not only for CMM’s).
This specification will describe the I++ application protocol for the following types of DME’s:

 3D coordinate measuring machines including multiple carriage mode

 Form testers

 Camshaft, crankshaft measuring machines

The spec is created to have a common interface to give the possibility to connect different
application packages to all DMEs.

1.3 Sub Working group I++ DME Interface (Dimensional Measuring Equipment)

I++ turn one‘s attention to the difficulties of the interfaces. So I++ defined a team, who are
responsible to work out a requirement specification for a neutral I++ DME interface.

1.4 Requirement

We demand a clear definition, that the DME vendor is responsible for the accuracy of his
measurement equipment, in the sense that all necessary functions related to the equipment
accuracy have to be implemented in the neutral I++ DME interface.
All calibration data, no matter where created, must be stored in the DME interface.

NIST will produce tools for testing the I++ DME Interface specification. These would be
made freely available outside NIST. Simulated Server/Client for verification, development
and certification scenarios will be provided.

1.5 What is the intention of the specification ?

• To use State-Of-The-Art technology but useable in legacy systems
 Definition of interface should be independent

I++ DME Version 1.3.1.draft 8

 of transport-layer and transport-technology

• It should provide Scalability
 “an easy machine should have an easy interface”

• Extendibility
 It should be possible to add new types of machines

• Encapsulation
 The complexity and vendor-specific know-how
 of the real machine should, can be hidden behind the interface

• Self-Explaining, Consistent, Complete
 Though being complex the interface should be in a
 notation that can be easily understood

Picture 1: Methods for description

 : Client : Server

ErrStatus()

Put()

Events are handled with a
higher priority in a special
queue. This causes
bypassing of standard
commands and shorter
reaction times.

C a r tC M M w i th R o ta r yT a b le

G o to ()
P T M e a s ()
A l ig n ()
G e t()

C a r tC M M

G o to ()
P T M e a s ()
G e t()

T o o l A B

G o to ()
G e t()
A l i g n ()

T o o lA B C

G o to ()
G e t()
A l i g n ()

D M E

H o m e ()
E n a b le U s e r ()
D is a b l e U s e r ()
R e p o r tO n M o ve ()
T yp e ()
S ta tu s In fo r m a tio n ()
R e s e t()

T o o l C h a n g e r

C h a n g e T o o l ()
E n u m T o o l s ()
A c t i ve T o o l ()
F in d T o o l ()

T o o l

Q u a l i fy()

S e r ve r

C o n n e c t()
D is co n n e c t()

//--

class PtMeasPars {

Param _Approach;
r8 _Search;
r8 _Retract;
GoToPars _Move;

//--

public: PtMeasPars();
virtual PtMeasPars();

//--

r8 MinSpeed() {return _Move.MinSpeed();}
r8 Speed () {return _Move.Speed();}
r8 MaxSpeed() {return _Move.MaxSpeed();}
ie Speed (cr8 s) {return _Move.Speed(s);}

//--

Objectmodel
(static)

Sequence Diagram
(dynamic)

Interface Description
(C++/IDL)

Function Catalog
1.1.1.1 GoToPar()

Pointer to the GoToParameter block of this instance of tool

 GoToPar()

Parameters None
Data pointer
Errors
Remark

1.1.1.2 PtMeasPar()

Pointer to the PtMeas Parameter block of this instance of tool

 PtMeasPar()

Parameters None
Data pointer
Errors
Remark

1.1.1.3 Abort()

Abort all moves, clear all commands

 Abort()

Parameters None
Data string
Errors
Remark

The following requirement specification is capable of further development. This means the
specification is valid for CMM‘s as well as other measurement equipment.

I++ DME Version 1.3.1.draft 9

1.6 Schedule steps

Changes from 1.0 to 1.1: Multiple arms (port numbers...)

Changes from 1.1 to 1.2: Scanning, hints, collision handling

Changes from 1.2 to 1.3: Rotary table
 Note: Versions 1.2 and 1.3 have been merged to 1.3!

Changes from 1.3 to 1.4: Form testers

Changes from 1.4 to 1.5: Camshaft, crankshaft measuring machines

Changes from 1.5 to 2.0: Optical sensors (based on OSIS requirements)

Unscheduled extension:
• Probe-calibration-parameters-protocol

Separate GUI and qualification routines; handle qualification process in client
application,
List of input-parameters necessary for calibration, all calibration data, no matter where
created, must be stored in the DME, for simple probes e.g. index able touchtrigger-
probes PH9-type.

• Add Jog-Box-Display methods
• Use Unicode for strings
• Export tool-assembly information
• New Csy’s: JogDisplayCsy, JogMoveCsy, SensorCsy
• Handling more than one socket between client and server
• Provide additional properties (DME Version No., Type of CMM, Brand of

implementer…)

1.7 History

1.1 Multiple arms:
Changes: 6.3.3, 6.3.3.3, 6.3.3.4, 10 becomes Appendix A
Added: 10

1.3 Scanning:
Improvements: 6.1.1, 6.3.3
Added: 11

1.3 Rotary Table and Various:
Improvements: 1.6, 1.7, 2., 6.1.4, 6.2.1, 6.2.3.1, 6.3.1.7, 6.3.2.8, 6.3.2.11, 6.3.2.13, 6.3.6,
6.3.7, 7.7, 8.1, 8.2, 9.1, 9.5.1
Added: 6.3.3.13, 6.3.8, 6.3.9, 6.3.2.23, 6.3.3.13, 9.5.6, 9.6, 9.7, 12

1.3.1.draft Improvements according feed back of implementers:

I++ DME Version 1.3.1.draft 10

Improvements: 1.6, 1.7, 5.2, 5.6, 6.1.4.1, 6.1.4.2, 6.2.1, 6.2.2.2, 6.2.3, 6.2.3.1, 6.2.4.1, 6.2.5,
6.3.1.1, 6.3.1.5, 6.3.1.6, 6.3.1.7, 6.3.1.9, 6.3.1.10, 6.3.1.11, 6.3.2.2, 6.3.2.6, 6.3.2.7, 6.3.2.12,
6.3.2.13, 6.3.2.14, 6.3.2.15, 6.3.2.16, 6.3.2.19, 6.3.2.20, 6.3.2.21, 6.3.2.22, 6.3.2.23, 6.3.3,
6.3.3.1, 6.3.3.3, 6.3.3.12, 6.3.3.13, 6.3.5.1, 6.3.5.2, 6.3.6, 6.3.7, 6.3.9, 7.7, 8.2, 9.1, 10, 9.5.2,
11.1.2, 11.2.2, 11.2.3, 11.2.4, 11.3.1, 11.3.2, 11.3.3, 11.3.4, 11.3.5, 11.3.6, 11.4.1, 11.4.2,
12.1, 8.1, 8.2, 11.1.2, 11.2.3. 11.3.1, 11.3.2, 11.3.3, 11.3.3, 11.3.4, 11.3.5, A.2.1, A.2.3, A2.2,
A.3.1, A.4.2, A.6.6, A.7.2
Added: 6.3.2.23, 6.3.2.24, 7.8
Shifted: 9.7 to 1.8

1.8 Links to important sites

Link to IA.CMM where this spec, the Rose model files and also the C++ header files can be
downloaded:

http://www.iacmm.org/stand_main.htm

Link to NIST where the DME test bed can be downloaded:

http://www.isd.mel.nist.gov/projects/metrology_interoperability/resources.html

I++ DME Version 1.3.1.draft 11

http://www.iacmm.org/stand_main.htm
http://www.isd.mel.nist.gov/projects/metrology_interoperability/resources.html

2 Physical System Layout

This section is intended to help explain the context of this specification. It is not part of the
specification.

Picture 2 shows two examples of the physical system layout for these types of machines.
In both examples the main components are
Client computer (Client) and
DME-Interface
Machine (including frame, motors, scales,...)

LAN LAN

Client Client

Jog box
PH9/10

Tool

Jog box
PH9/10

Tool

Black-Box-DME-Interface
Physical Layout

DME-Interface

PC based DME-Interface
Physical Layout

Client and DME-Interface are connected through a local area network (LAN).
Both client and DME-Interface use TCP/IP sockets for communication.
The client computer runs the application software for the measurement task.
The DME-Interface implements all functionality required to drive the machine.
The application software on the client talks to the DME-Interface in order to execute
elementary measurement tasks (picking points, scanning,).
This specification describes the protocol that the client uses to run the machine through the
DME-Interface.
Explanations: In the following lines client is used synonym for the application software,
server is used for DME. Client and server can be on different computers, but they can also run
on the same hardware being connected by TCP/IP socket.

I++ DME Version 1.3.1.draft 12

2.1 DME-Interface Implementations

The main difference between the two implementations of the DME-Interface in Picture 1 is
the physical implementation of the DME-Interface, which is

PC based or
“Black Box” based

While the PC based DME-Interface provides a direct physical (screen, keyboard) user
interface the black box based system provides no direct user interface,
PC based systems may provide additional low-level user interfaces that help the user to
control and monitor the machine.
“Black Box” based systems have a potential cost advantage.

2.2 DME-Interface Model

Picture 3 shows the system layout we will use in this document for explanations.
It is important to recognize that all subsystems are linked to the DME-Interface.
This implies that the client must use the protocol to access subsystem functionalities, like rotating a PH10.

Subsystem

DME

LAN

Tool
Rotary
Mechanical sensors (hard probes, ...)
Touch Trigger
Video
Continuous
Spindle
Temperature

PH9/10
Jog box

DME-Interface

I++ DME Version 1.3.1.draft 13

2.3 Logical System Layout

Picture 4 shows the logical layout of the system with the following components:
DME-Interface and subsystems
Application
Monitor
Diagnostics

Info

Application

Monitor Windows Application

Monitor

Subsystem

Application

Subsystem

Diag DME-Interface

I++ DME Version 1.3.1.draft 14

2.4 DME-Interface and Subsystems

The DME-Interface is a piece of software that runs on a PC based or "black box" based piece
of hardware. This hardware connects to all subsystems (Picture 3).
The DME-Interface handles all subsystems and provides TCP/IP sockets for communication.
When the hardware is powered up and the DME-Interface is started, the DME-Interface will
create up to 4 TCP/IP ports:

 Application port (required) port No. 1294
 Monitor port (optional)
 Diagnostics port (optional)
 Info port (optional in V.1.0 will be required in future version)

2.4.1 Application

The application is a piece of software that runs on the client computer and that uses the
application port to run the DME.
This specification describes the protocol used on the application port.
The port number 1294 is internationally defined for this connection.
This port is the only one to start any movements of machine or tool. Only this allows
changing any parameter.

2.4.2 Monitor

The machine monitor (monitor) is a piece of software that is used to display controller
specific information like current machine position, active probe, …
It connects to the monitor port to receive the displayed information from the DME-Interface.
The monitor is an optional component.
The controller may implement an equivalent functionality, for example by displaying the
machine position on the jog box display.
In most cases the DME vendor will supply the monitor.
A description of the monitor is not part of this specification.

2.4.3 Diagnostics

The machine diagnostics (diagnostics) is a piece of software that is used to display diagnostic
information necessary to service, repair or set up the DME.
It connects to the diagnostic port to receive information from the DME-Interface.
The diagnostic is an optional component.
The DME vendor supplies the diagnostics.
A description of the diagnostics is not part of this specification.

2.4.4 Info

The info is a piece of software that runs on a client computer. The info obtains information
from the DME-Interface through the info port and provides the information to the client
(axis, sensors,…).
This specification describes the protocol used on the info port.

I++ DME Version 1.3.1.draft 15

The functions possible on the info port are a subset of the functions possible on the
application port. On this port machine moving commands and setting of parameters are
prohibited. Only information receiving dialog is allowed.

I++ DME Version 1.3.1.draft 16

3 Hierarchy of Communication

3.1 Layers
The properties of the measuring equipment and the methods to handle them are defined by the
object model, see picture 13.
The actual defined transport layer is to transmit ASCII strings via TCP/IP socket.
The layers are separated to have the chance to change the transport layer to future
technologies.
Picture 5

TCP/IP Socket, ASCII Strings

Client Obj Model

DME
Home()
EnableUser()

rt
GetError)

DisableU)ser(
Rep
Info(
rror

AbortE()

E()
ClearAllE s() OnMove o

ToolChanger
ActiveToo

EnumToo

CartCMM

()
eas(

Get()

PTM) Goto

ChangeTool()
ls()
l()

FindTool()

Methods .GoTo

Transport Layer
Client

Transport Layer Server
Interpreter, Errorhandling...

I++ DME Version 1.3.1.draft
PtMeas
Server Obj Model
I++ DME

Connect()
Disconnect()

Server

CartCMMwithRotaryTable

Goto()
PTMeas()
AlignPart()
Get()

CartCMM

Goto()
PTMeas()
Get()

ToolAB
Goto()

ToolChanger
ChangeTool(

s()
l()

FindToo
)

ActiveToo
l()

Tool
Qualify()

EnumTool

Home()
EnableUser()
DisableUser()
OnMoveReportE()
GetErrorInfo()
ClearAllErrors()
AbortE()

DME

Get()
AlignT l() oo

ToolABC
Get()

Goto()

AlignTool()

17

3.2 Examples of basic use cases

3.2.1 Sequence Diagram: StartSession, EndSession
Picture 6

 : Client : Server

work with
equipment

StartSession()

EndSession()

StartSession()

EndSession()

work with
equipment

The instances are
existing prior to
StartSession and
after EndSession!

Repeating Start
Session and
EndSession
cycles is
possible

3.2.2 Sequence Diagram: Standard Queue Communication
Picture 7

 : Client : Server

Client calls for machine type
information (example) and
gets response when command is
executed by normal queue

GetMachineClass()

Put()

I++ DME Version 1.3.1.draft 18

Sequence Diagram: Event, Fast Queue Communication (Single Shot Events)
Picture 8

 : Client : Server

GetErrorInfo()

Put()

Events are handled with a
higher priority in a special
queue. This causes
bypassing of standard
commands and shorter
reaction times.

3.2.3 Sequence Diagram: Event, Fast Queue Communication (Multiple Shot Events)
Picture 9

 : (Client) : Server

Machine moves

Machine moves

Machine moves

Machine moves

OnMoveReportE(..)

Put()

Put()

Put()

StopDaemon(ETag)

I++ DME Version 1.3.1.draft 19

3.2.4 Sequence Diagram: Handling of Unsolicited Errors
Picture 10

 : (Client) : (Server)

StartSession()

Work with
equipment
Error occures

Error()

Recover from
error if
necessary

Work with
equipment

EndSession()

I++ DME Version 1.3.1.draft 20

4 Events

To increase performance and to reduce traffic on the interface the Event transactions are
created. Events use tags starting with E.

Picture 11: Explanation of the difference between normal and fast queue.

See also sequence diagram section 6.2.4.

Yes No

Further

execution

Further

execution

Generating
of daemons,
Get current

status
...

Fast
execution

queue
(high priority)

Normal
execution

queue
(FIFO)

E in
column 1

Server
input

4.1 Transaction events, syntax

Event transactions are initiated by the client.
Event requests are handled by the server with a higher priority than the synchronous
communication. This means that the requests can bypass the normal command queue in the
server.
In addition to normal transaction processing, the server will trigger an event. Legal tags are
tags starting with E0001 up to E9999. The tag E0000 is reserved for events with no relation to
legal tags.

I++ DME Version 1.3.1.draft 21

4.2 One shot events

These Events are used to generate exactly one asynchronous reaction of the server. F.I. getting
asynchronous status or position information.
The transaction creates a daemon that triggers an event. The daemon will die after firing the
event.

4.3 Multiple shot events

The transaction creates a daemon that triggers events based on a condition. The client must
stop this daemon explicitly by a StopDaemon (“Event transaction tag”) method.

4.4 Server events

Server events use tag E0000. They are used to report manual hits, keystrokes, supported
machine status changes...

I++ DME Version 1.3.1.draft 22

5 Object Model

5.1 Explanation

The following diagrams (picture 12 and 13) show the designed class structure of the interface.
It shows
• the classes representing the main components of real coordinate measurement equipment

(in this, first case coordinate measurement machine)
• the organization of methods and properties in these classes
• the relations between the main classes, the generalizations (specialization vice versa), the

aggregations...
• this object model defines the structure of the interface and the syntax. It defines how to set

and get the properties of the virtual components of this machine (section 6)
• Picture 11 is generated to help at a first step with the most important commands.
• Picture 12 is reengineered from and consistent with the header files (section 9). It shows

also programming aspects as virtual definitions of methods in upper classes as DME and
also property aspects as GoToPar and PtMeasPar blocks.

I++ DME Version 1.3.1.draft 23

5.2 Reduced Object Model
Picture 12, basics, outside view, method oriented

ToolAB

Align()
A()
B()

ToolABC

Align()
C()

Server

StartSession()
EndSession()
StopDaemon()
StopAllDaemons()
AbortE()
GetErrorInfo()
ClearAllErrors()
GetProp()
GetPropE()
SetProp()
EnumProp()
EnumAllProp()

CartCMM

SetCoordSystem()
GetCoordSystem()
GetCsyTransformation()
SetCsyTransformation()

KTool

GoTo Par()
AB CGoT oP ar()
PtM easPar()
AB CP tMea sPar()
ReQu alify()

DME

Home()
IsHomed()
EnableUser()
DisableUser()
IsUserEnabled()
OnPtMeasReport()
OnMoveReportE()
GetMachineClass()
GetErrStatusE()
GetXtdErrStatus()
Get()
GoTo()
PTMeas()
Tool()
FindTool()
FoundTool()
ChangeTool()
SetTool()
AlignTool()
GoToPar()
PtMeasPar()
ABCGoToPar()
ABCPtMeasPar()
X()
Y()
Z()
IJK()
opname()
OnScanReport()
ScanOnCircleHint()
ScanOnCircle()
ScanOnLineHint()
ScanOnLine()
ScanUnknownHint()
ScanInPlaneEndIsSphere()
ScanInPlaneEndIsPlane()
ScanInPlaneEndIsCyl()
ScanInCylEndIsSphere()
ScanInCylEndIsPlane()
AlignPart()

ToolChanger

EnumTools()

CartCMM WithRotT bl

Align()
R()

I++ DME Version 1.3.1.draft 24

5.3 Full Object Model
Picture 13, please zoom the .pdf file view.

Part

Part() : Part
Approach() : r8
~Part()
Search() : r8

(from server)

Server

Server() : Server
StartSession(tag : cTag) : void
~Server()
EndSession(tag : cTag) : void
StopDaemon(tag : cTag, fqt : cETag&) : ie
StopAllDaemons(tag : cTag) : ie
AbortE(tag : cTag) : void
GetErrorInfo(tag : cTag) : void
ClearAllErrors(tag : cTag) : void
GetProp(tag : cTag, : ...) : void
GetPropE(tag : cTag, : ...) : void
SetProp(tag : cTag, : ...) : void
EnumProp(tag : cTag, : ...) : void
EnumAllProp(tag : cTag, : ...) : void
MainLoop() : void
DispatchToEventQue(tag : Tag*, command : String&) : void
Dispatch(tag : Tag*, command : String&) : void
SendAck(tag : Tag*) : void
SendData(tag : Tag*, data : cString&) : void
SendError(tag : Tag*, sev : cErrorSeverity, code : cErrorCode) : void
SendReady(tag : Tag*) : void
FormatTag(response : String&, tag : Tag*) : void
DecodeTag(command : cString&) : i4
Transmit(response : cString&) : void
ServerIsAlive() : bool
GetErrorSeverity() : ErrorSeverity
GetErrorCode() : ErrorCode
ErrorDuringCommandExecution() : bool

(from server)

11

-_Part

11

EulerA

EulerA() : EulerA
EulerA(theta : cr8, psi : cr8, phi : cr8) : EulerA
EulerA(b : cR33&) : EulerA
Tht() : r8
~EulerA()
Psi() : r8
Phi() : r8

(from lib)

CoordSys
(from lib)

CartCMM

CartCMM() : CartCMM
XAx() : Axis*
~CartCMM()
YAx() : Axis*
ZAx() : Axis*
SetCoordSystem(csy : enum CoordSys) : ie
GetCoordSystem() : enum CoordSys
SetCsyTransformation(tra : const T33EA&) : ie
GetCsyTransformation() : T33EA
X() : r8
X(x : cr8) : ie
Y() : r8
Y(y : cr8) : ie
Z() : r8
Z(z : cr8) : ie
IJK() : V3
IJK(ijk : const V3&) : ie

(from cartcmm)

1

1

-_CoordSys 1

1

CartCmmWithRotTbl

CartCmmWithRotTbl() : CartCmmWithRotTbl
RAx() : Ax is*
~CartCmmWithRotTbl()
AlignPart(tag : cTag, : ...) : ie
Type() : char*

(from cartcmmw ithrottbl)

ToolABC

ToolABC(name : const String&) : ToolABC
Align(tag : cTag, ijk : cV3&) : ie
~ToolABC()
EnumProp(tag : cTag) : void
C() : r8
C(c : cr8) : ie

(from toolchanger)

Axis

_Name : char [8]

Axis() : Axis
~Axis()
Type() : i4
MinPos() : r8
MaxPos() : r8
Pitch() : r8
Temperature() : r8
$EnumProp() : void

(from lib)

1

1
-_XAxis

1

1
1

1

-_YAxis
1

1

1

1

-_ZAxis 1

1

1

1

-_RAxis 1

1

1

1

-_CAxis 1

1

ToolAB

ToolAB(name : cString&) : ToolAB
Align(tag : cTag, ijk : cV3&) : ie
~ToolAB()
EnumProp(tag : cTag) : void
A() : r8
A(a : cr8) : ie
B() : r8
B(b : cr8) : ie

(from toolchanger)

1

1

-_AAxis 1

1

1

1

-_BAxis 1

1

DME

DME() : DME
TCh() : ToolChanger*
~DME()
Home(tag : cTag) : ie
IsHomed(tag : cTag) : i4
EnableUser(tag : cTag) : void
DisableUser(tag : cTag) : void
IsUserEnabled(tag : cTag) : bool
OnPtMeasReport(tag : cTag, : ...) : ie
OnMoveReportE(tag : cETag, dis : cr8, time : cr8, : ...) : ie
GetMachineClass(tag : cTag) : void
GetErrStatusE(tag : cTag) : void
GetXtdErrStatus(tag : cTag) : void
Get(tag : cTag, : ...) : void
GoTo(tag : cTag, : ...) : ie
PtMeas(tag : cTag, : ...) : ie
PtMeasIJK(tag : cTag, : ...) : ie
Tool() : KTool*
FindTool(tag : cTag, name : cString&) : ie
FoundTool() : KTool*
ChangeTool(tag : cTag, name : cString&) : ie
SetTool(tag : cTag, name : cString&) : ie
AlignTool(tag : cTag, ijk : cV3&, alpha : cr8) : ie
AlignTool(tag : cTag, ijk : cV3&, uvw : cV3&, alpha : cr8, beta : cr8) : ie
GoToPar() : GoToPars*
PtMeasPar() : PtMeasPars*
ABCGoToPar() : GoToPars*
ABCPtMeasPar() : PtMeasPars*
X() : r8
X(x : cr8) : ie
Y() : r8
Y(y : cr8) : ie
Z() : r8
Z(z : cr8) : ie
IJK() : V3
IJK(ijk : const V3&) : ie
OnScanReport(tag : cTag, : ...) : ie
ScanOnCircleHint(tag : cTag, : ...) : ie
ScanOnCircle(tag : cTag, : ...) : ie
ScanOnLineHint(tag : cTag, : ...) : ie
ScanOnLine(tag : cTag, : ...) : ie
ScanUnKnownHint(tag : cTag, : ...) : ie
ScanInPlaneEndIsSphere(tag : cTag, : ...) : ie
ScanInPlaneEndIsPlane(tag : cTag, : ...) : ie
ScanInPlaneEndIsCyl(tag : cTag, : ...) : ie
ScanInCylEndIsSphere(tag : cTag, : ...) : ie
ScanInCylEndIsPlane(tag : cTag, : ...) : ie

(from dme)

ToolChanger

ToolChanger() : ToolChanger
~ToolChanger()
ActTool() : KTool*
FoundTool() : KTool*
GoToPar() : GoToPars*
ABCGoToPar() : GoToPars*
PtMeasPar() : PtMeasPars*
ABCPtMeasPar() : PtMeasPars*
Howmany(tag : cTag) : i4
Qualify(tag : cTag) : ie
ChangeTool(tag : cTag, name : cString&) : ie
SetTool(tag : cTag, name : cString&) : ie
FindTool(tag : cTag, name : cString&) : ie
FindTool(tag : cTag, ijk : cV3&) : ie
Find(tag : cTag, name : cString&) : KTool*
Find(tag : cTag, ijk : cV3&) : KTool*
ActToolName(tag : cTag) : String
EnumTools(tag : cTag) : void

(from toolchanger)

1

1

-_ToolChanger 1

1

GoToPars

GoToPars() : GoToPars
MinSpeed() : r8
~GoToPars()
Speed() : r8
Speed(s : c r8) : ie
MaxSpeed() : r8
CanChangeSpeed() : bool
MinAccel() : r8
Accel() : r8
Accel(s : cr8) : ie
MaxAccel() : r8
CanChangeAccel() : bool
EnumProp() : void

(from toolchanger)
KTool

KTool(name : cString&) : KTool
Name() : String
~KTool()
GoToPar() : GoToPars*
ABCGoToPar() : GoToPars*
PtMeasPar() : PtMeasPars*
ABCPtMeasPar() : PtMeasPars*
CanDoGoTo() : bool
CanDoPtMeas() : bool
Qualify(tag : cTag) : ie
Align(tag : cTag, ijk : cV3&) : ie
AlignTool(tag : cTag, ijk : cV3&, alpha : cr8) : ie
AlignTool(tag : cTag, ijk : cV3&, uvw : cV3&, alpha : cr8, beta : cr8) : ie
EnumProp(tag : cTag, : .. .) : void
GetProp(tag : cTag, : ...) : void
GetPropE(tag : cTag, : ...) : void
SetProp(tag : cTag, : .. .) : void
A() : r8
A(a : cr8) : ie
B() : r8
B(b : cr8) : ie
C() : r8
C(c : cr8) : ie

(from toolchanger)

0. .1

1

-_ActTool

0. .1

1

0..1

1

-_FoundTool
0. .1

1

0..1

1

-_DefaultTool
0. .1

1

0..1

1

-_UndefTool

0. .1

1

0..1

1

-_GoToPar
0..1

1

0..1

1

-_ABCGoToPar 0..1

1

Param

Param() : Param
Min() : r8
Min(v : cr8) : void
~Param()
Val() : r8
Val(v : cr8) : ie
Max() : r8
Max(v : cr8) : void
CanChange() : bool
CanChange(v : cbo) : void
EnumProp() : void

(from toolchanger)

1

1

-_Speed

1

1

1

1

-_Accel 1

1

PtMeasPars

PtMeasPars() : PtMeasPars
CanChangeSpeed() : bool
~PtMeasPars()
MinSpeed() : r8
Speed() : r8
Speed(s : cr8) : ie
MaxSpeed() : r8
CanChangeAccel() : bool
MinAccel() : r8
Accel() : r8
Accel(s : cr8) : ie
MaxAccel() : r8
EnumProp() : void

(from toolchanger)

1 1

-_Move

1 1
0..1

1

-_PtMeasPar

0. .1

1

0. .1

1

-_ABCPtMeasPar

0. .1

1

1

1

-_Approach
1

1

I++ DME Version 1.3.1.draft 25

5.4 Packaging for visualization
Picture 14

<unspecified>

cartcmm lib

dme

cartcmmwithrott
bl

toolchanger

server

5.5 Contents of server
Picture 15

Part

Part() : Part
Approach() : r8
~Part()
Search() : r8

Server

Server() : Server
StartSession(tag : cTag) : void
~Server()
EndSession(tag : cTag) : void
StopDaemon(tag : cTag, fqt : cETag&) : ie
StopAllDaemons(tag : cTag) : ie
AbortE(tag : cTag) : void
GetErrorInfo(tag : cTag) : void
ClearAllErrors(tag : cTag) : void
GetProp(tag : cTag, : ...) : void
GetPropE(tag : cTag, : . ..) : void
SetProp(tag : cTag, : ...) : void
EnumProp(tag : cTag, : ...) : void
EnumAllProp(tag : cTag, : . ..) : void
MainLoop() : void
DispatchToEventQue(tag : Tag*, command : String&) : void
Dispatch(tag : Tag*, command : String&) : void
SendAck(tag : Tag*) : void
SendData(tag : Tag*, data : cString&) : void
SendError(tag : Tag*, sev : cErrorSeverity, code : cErrorCode) : void
SendReady(tag : Tag*) : void
FormatTag(response : String&, tag : Tag*) : void
DecodeTag(command : cStr ing&) : i4
Transmit(response : cString&) : void
ServerIsAlive() : bool
GetErrorSeverity() : ErrorSeverity
GetErrorCode() : ErrorCode
ErrorDuringCommandExecution() : bool

1

1

-_Part
1

1

I++ DME Version 1.3.1.draft 26

5.6 Contents of dme
Picture 16

DME

DME() : DME
TCh() : ToolChanger*
~DME()
Home(tag : cTag) : ie
IsHomed(tag : cTag) : i4
EnableUser(tag : cTag) : void
DisableUser(tag : cTag) : void
IsUserEnabled(tag : cTag) : bool
OnPtMeasReport(tag : cTag, : ...) : ie
OnMoveReportE(tag : cETag, dis : cr8, time : cr8, : ...) : ie
GetMachineClass(tag : cTag) : void
GetErrStatusE(tag : cTag) : void
GetXtdErrStatus(tag : cTag) : void
Get(tag : cTag, : ...) : void
GoTo(tag : cTag, : ...) : ie
PtMeas(tag : cTag, : ...) : ie
PtMeasIJK(tag : cTag, : ...) : ie
Tool() : KTool*
FindTool(tag : cTag, name : cString&) : ie
FoundTool() : KTool*
ChangeTool(tag : cTag, name : cString&) : ie
SetTool(tag : cTag, name : cString&) : ie
AlignTool(tag : cTag, ijk : cV3&, alpha : cr8) : ie
AlignTool(tag : cTag, ijk : cV3&, uvw : cV3&, alpha : cr8, beta : cr8) : ie
GoToPar() : GoToPars*
PtMeasPar() : PtMeasPars*
ABCGoToPar() : GoToPars*
ABCPtMeasPar() : PtMeasPars*
X() : r8
X(x : cr8) : ie
Y() : r8
Y(y : cr8) : ie
Z() : r8
Z(z : cr8) : ie
IJK() : V3
IJK(ijk : const V3&) : ie
OnScanReport(tag : cTag, : ...) : ie
ScanOnCircleHint(tag : cTag, : ...) : ie
ScanOnCircle(tag : cTag, : ...) : ie
ScanOnLineHint(tag : cTag, : ...) : ie
ScanOnLine(tag : cTag, : ...) : ie
ScanUnKnownHint(tag : cTag, : ...) : ie
ScanInPlaneEndIsSphere(tag : cTag, : ...) : ie
ScanInPlaneEndIsPlane(tag : cTag, : ...) : ie
ScanInPlaneEndIsCyl(tag : cTag, : ...) : ie
ScanInCylEndIsSphere(tag : cTag, : ...) : ie
ScanInCylEndIsPlane(tag : cTag, : ...) : ie

I++ DME Version 1.3.1.draft 27

5.7 Contents of cartcmm
Picture 17

CartCMM

CartCMM() : CartCMM
XAx() : Axis*
~CartCMM()
YAx() : Axis*
ZAx() : Axis*
SetCoordSystem(csy : enum CoordSys) : ie
GetCoordSystem() : enum CoordSys
SetCsyTransformation(tra : const T33EA&) : ie
GetCsyTransformation() : T33EA
X() : r8
X(x : cr8) : ie
Y() : r8
Y(y : cr8) : ie
Z() : r8
Z(z : cr8) : ie
IJK() : V3
IJK(ijk : const V3&) : ie

5.8 Contents of cartcmmwithrotarytable
Picture 18

CartCmmWithRotTbl

CartCmmWithRotTbl() : CartCmmWithRotTbl
RAx() : Axis*
~CartCmmWithRotTbl()
AlignPart(tag : cTag, : ...) : ie
Type() : char*

I++ DME Version 1.3.1.draft 28

5.9 Contents of toolchanger
Picture 19

ToolAB

ToolAB(name : cString&) : ToolAB
Align(tag : cTag, ijk : cV3&) : ie
~ToolAB()
EnumProp(tag : cTag) : void
A() : r8
A(a : cr8) : ie
B() : r8
B(b : cr8) : ie

ToolABC

ToolABC(name : const String&) : ToolABC
Align(tag : cTag, ijk : cV3&) : ie
~ToolABC()
EnumProp(tag : cTag) : void
C() : r8
C(c : cr8) : ie

ToolChanger

ToolChanger() : ToolChanger
~ToolChanger()
ActTool() : KTool*
FoundTool() : KTool*
GoToPar() : GoToPars*
ABCGoToPar() : GoToPars*
PtMeasPar() : PtMeasPars*
ABCPtMeasPar() : PtMeasPars*
Howmany(tag : cTag) : i4
Qualify(tag : cTag) : ie
ChangeTool(tag : cTag, name : cString&) : ie
SetTool(tag : cTag, name : cString&) : ie
FindTool(tag : cTag, name : cString&) : ie
FindTool(tag : cTag, ijk : cV3&) : ie
Find(tag : cTag, name : cString&) : KTool*
Find(tag : cTag, ijk : cV3&) : KTool*
ActToolName(tag : cTag) : String
EnumTools(tag : cTag) : void

GoToPars

GoToPars() : GoToPars
MinSpeed() : r8
~GoToPars()
Speed() : r8
Speed(s : cr8) : ie
MaxSpeed() : r8
CanChangeSpeed() : bool
MinAccel() : r8
Accel() : r8
Accel(s : cr8) : ie
MaxAccel() : r8
CanChangeAccel() : bool
EnumProp() : void

KTool

KTool(name : cString&) : KTool
Name() : String
~KTool()
GoToPar() : GoToPars*
ABCGoToPar() : GoToPars*
PtMeasPar() : PtMeasPars*
ABCPtMeasPar() : PtMeasPars*
CanDoGoTo() : bool
CanDoPtMeas() : bool
Qualify(tag : cTag) : ie
Align(tag : cTag, ijk : cV3&) : ie
AlignTool(tag : cTag, ijk : cV3&, alpha : cr8) : ie
AlignTool(tag : cTag, ijk : cV3&, uvw : cV3&, alpha : cr8, beta : cr8) : ie
EnumProp(tag : cTag, : ...) : void
GetProp(tag : cTag, : ...) : void
GetPropE(tag : cTag, : . ..) : void
SetProp(tag : cTag, : . ..) : void
A() : r8
A(a : cr8) : ie
B() : r8
B(b : cr8) : ie
C() : r8
C(c : cr8) : ie

0..1

1

-_ActTool

0..1

1

0..1

1

-_FoundTool
0..1

1

0..1

1

-_DefaultTool

0..1

1

0..1

1

-_UndefTool

0..1

1

0..1

1

-_GoToPar

0..1

1

0..1

1

-_ABCGoToPar 0..1

1 Param

Param() : Param
Min() : r8
Min(v : cr8) : void
~Param()
Val() : r8
Val(v : cr8) : ie
Max() : r8
Max(v : cr8) : void
CanChange() : bool
CanChange(v : cbo) : void
EnumProp() : void

1

1

-_Speed

1

1

1

1

-_Accel
1

1

PtMeasPars

PtMeasPars() : PtMeasPars
CanChangeSpeed() : bool
~PtMeasPars()
MinSpeed() : r8
Speed() : r8
Speed(s : cr8) : ie
MaxSpeed() : r8
CanChangeAccel() : bool
MinAccel() : r8
Accel() : r8
Accel(s : cr8) : ie
MaxAccel() : r8
EnumProp() : void

1 1
-_Move

1 1

0..1

1

-_PtMeasPar

0..1

1

0..1

1

-_ABCPtMeasPar
0..1

1

1

1

-_Approach

1

1

I++ DME Version 1.3.1.draft 29

5.10 Contents of lib and unspecified
Picture 20

CoordSys

DateTime

DateTime() : DateTime
~DateTime()

ETag

ETag(i : ci4) : ETag
~ETag()

cStringcTagcETagcGoToPars

cPtMeasPars

cV3 cM33cR33

cT33cT33EAcEulerAcAxiscPart

cErrorSeveritycErrorCode ErrorSeverity

ErrorCodeMachineClass

uccuc

chccui2i2

ci2cui2

ci4ieciecui

uiichcichcr8r4cr4bo

cbo

R33

R33() : R33
R33(b : cEulerA&) : R33
~R33()
operator -() : R33&
Create(b : cEulerA&) : void
operator *=(b : cR33&) : R33&

Str ing

Str ing() : String
~String()
operator [](i : ci4) : String&
FirstCharIs(ch : char) : bool
operator =(s : char) : void
operator +=(s : cc*) : void
operator +=(s : cString&) : void
Format(tag : ci4, fmt : ci4) : void

(Ary< char >)

T

Ary

Ary() : Ary
~Ary()
Len() : i4
operator [](i : ci4) : T
Add(item : T) : void
SetLen0() : void

i4
1

1

-_

1

1

Tag

Tag(i : ci4) : Tag
~Tag()
Val() : i4
NewTag() : i4

1
1

-$_

1
1

1
1

-_

1
1

AxisType
(from Axis)

Axis
_Name : char [8]

Axis() : Axis
~Axis()
Type() : i4
MinPos() : r8
MaxPos() : r8
Pitch() : r8
Temperature() : r8
$EnumProp() : void

1

1

-_ 1

1

EulerA

EulerA() : EulerA
EulerA(theta : cr8, psi : cr8, phi : cr8) : EulerA
EulerA(b : cR33&) : EulerA
Tht() : r8
~EulerA()
Psi() : r8
Phi() : r8

M33

M33() : M33
Lim(z : cui, s : cui) : ui
~M33()
Val(z : cui, s : cui) : r8
Mat(z : cui, s : cui) : r8&

T33DefT33

T33() : T33
~T33()

r8
1

1

-_

1
1

1
1

-_

1
1

1
1

-_

1
1

1
1

-_

1
1

1
1

-_

1
1

1

1

-_ 1

1

1

1

-_ 1

1

1

1

-_ 1

1

9

1

#v
9

1

1

1

-_

1

1

1

1

-_

1

1

1

1

-_

1

1

V3

V3() : V3
~V3()1

1

-_

1

1

3

1

#v3

1

boolT33EAEulerW

I++ DME Version 1.3.1.draft 30

6 Protocol

6.1 Communication

Communication between application client and I++DME server is based on the standard
TCP/IP protocol. It uses the application port with port-no. 1294.

6.1.1 Character set

All bytes received and sent on the application port of the server are interpreted as 8-bit ASCII
characters. The 128's bit must always be zero.
Only characters in the range from ASCII code = 32 (space) to ASCII code = 126 (~) may be
used, except that the character pair Carriage Return (<CR>, ASCII code = 13) and Line Feed
(<LF>, ASCII code = 10) is used as a line terminator.
<CR> and <LF> must always be sent as a pair in the order <CR> followed by <LF>.
If the server receives a message containing any character outside of this range or containing a
<CR> or <LF> anywhere except at the end of the message, the server must send an error
response, using error 0007, "Illegal character".
Upper case letters and lower case letters are regarded as different letters in this protocol. In
other words, the protocol is case sensitive.

6.1.2 Units
Numbers that represent measures must use the following units.
Length: millimeters
Time: seconds
Angles: decimal degrees (no minutes or seconds)
Temperature: degrees Celsius
Force: Newtons
Compound measures use combinations of these units. For example, speed (which is length per
unit time) must be expressed in millimeters per second.

6.1.3 Enumeration

 An enumeration is a list of zero to many items from a specified list
 of candidate items. Each item may appear in the enumeration list at
 most once, and the order in which the items appear on the enumeration
 list is not significant. For example, if the candidate list is (a, b,
 c, d, e):

 1. (a, b, d) and (d, a, b) are the same enumeration, and both are legal.
 2. (c, b, c) is illegal because c appears twice.
 3. (c, e, h) is illegal because h does not appear in the candidate list.

6.1.4 Definitions used in formats

This section defines the entire syntax of well-formed I++ DME commands

I++ DME Version 1.3.1.draft 31

and responses, up to the <CR> <LF> line terminator. The syntax is defined
using a production language. The production language is described in
section 6.1.4.1, and the syntax in section 6.1.4.2.

6.1.4.1 Production Language

Each statement in the production language is a single line of the form

 term :== definition

This means that any sequence of characters that matches the definition
can be considered to be an instance of the term.

For example, Num :== "0".."9" is a statement that means a Num
is defined to be any of the characters from zero to nine.

The following special symbols are used in the production language.

"" Any single character between double quotes means that literal
 single character. For example "X" means X (ASCII 88).

.. means in the range. For example, "0".."9" means a single digit
 between zero and nine (including 0 and 9).

 | means "or"

() A set of left and right parentheses means exactly one of whatever
 is enclosed. For example, (A | B) means A or B. If a left or right
 parenthesis is surrounded by double quotes, i.e. "(" or ")", it
 loses its special meaning and is just a single character.

[] A set of square brackets means zero or one of whatever is enclosed.
 For example, ["+" | "-"] means a plus sign, a minus sign, or no
 sign at all.

{} A set of curly brackets means zero to many of whatever is enclosed.
 For example, {Num} means zero to many digits.

Anything on the right side of a statement that is not a special symbol
must be either a term already defined or a single character enclosed
by double quotes. Spaces inside a line have no significance other than
to separate terms.

6.1.4.2 Syntax

The syntax described here is complete, except that actual allowed values of
Name and ArgList are much more limited than given here. Only names of
actual Commands may be used, and for each Command, only certain arguments
are valid. The allowed names and arguments are described in Sections 6, 11,
and 12.

I++ DME Version 1.3.1.draft 32

In four cases below, additional limitations are placed on allowed
syntax using natural language.

The definition of Number is necessarily messy-looking because the
following three conditions (among others) must apply:
a. There must be at least one digit somewhere in the number.
b. It is OK if there are no digits before the decimal point.
c. It is OK if there are no digits after the decimal point.

In natural language, the definition of a number means: An optional sign
followed by one or more digits (optionally with a decimal point before the
digits, between two digits, or after the last digit) followed optionally by
an exponent. An exponent is an upper case E followed by an optional sign,
followed by one, two, or three digits.

The definition of ErrorResponse is given on two lines because it will not
fit on one line.

The definition implements the following rules regarding optional spaces.
Any number of optional spaces may appear (1) before or after a comma, (2)
before or after a left parenthesis (3) before a right parenthesis.
Optional spaces may appear nowhere else. Note that a single non-optional
space is required in several places.

s :== " "
I.e. a single space (ASCII 32)

q :== """
I.e. a double-quote character (ASCII 34)

Char :== s | "!" | "#" | .. | "~"
I.e. ASCII character codes from space (ASCII 32) to ~ (ASCII 126),
excluding the double quote character (ASCII 34).

String :== q Char {Char} q
except that the number of characters between the quotes shall not exceed 255.

Alp :== "A" .. "Z" | "a" .. "z"
I.e. any upper case letter (ASCII 65 to 90) or lower case letter
(ASCII 97 to 122)

Num :== "0" .. "9"
I.e. any digit (ASCII 48 to 57).

BasicName :== Alp {Alp | Num}

Name :== BasicName { "." BasicName}

UnsInt :== Num Num Num Num

I++ DME Version 1.3.1.draft 33

Tag :== "0" UnsInt
except that 00000 is not allowed.

ETag0 :== "E" "0" "0" "0" "0"

ETag :== "E" UnsInt
except that E0000 (which is ETag0) is not an ETag.

Exponent :== ("E"| „e“)["+"|"-"]Num[Num[Num]]

Number :== ["+"|"-"]((Num{Num}["."]{Num}) | ("."Num{Num}))[Exponent]
except that the total number of digits shall not exceed 16.

SCommaS := {s} "," {s}

SLeftParenS := {s} "(" {s}

SRightParen := {s} ")"{s}

PropertyArgList :== {Number {SCommaS Number}}
Note that this may possibly be no characters at all.

Property :== Name SLeftParenS PropertyArgList SRightParen

Argument :== String | Number | Property | ETag | BasicName

MethodArgList :== {Argument {SCommaS Argument}}
Note that this may possibly be no characters at all.

Method :== BasicName SLeftParenS MethodArgList SRightParen

Command :== (Tag | ETag) s Method

AckResponse :== (Tag | ETag) s "&"

DoneResponse :== (Tag | ETag) s "%"

NumData :== Number {SCommaS Number}

PropData :== String SCommaS String

PropertyList :== Property {SCommaS Property}

DataData :== NumData | PropData | Method | PropertyList

DataResponse :== (Tag | ETag) s "#" s DataData

F1 :== Num

F2 :== UnsInt

I++ DME Version 1.3.1.draft 34

F3 :== String

Text :== String

ErrorResponse :== (Tag | ETag) s "!" s "E" "r" "r" "o" "r"
 SLeftParenS F1 SCommaS F2 SCommaS F3 SCommaS Text SRightParen

Response :== AckResponse | DoneResponse | DataResponse | ErrorResponse

6.2 Protocol Basics

 The protocol is line oriented.

 Each line must be terminated by <CR><LF>.

 The maximum number of characters in a line should not exceed 65536.

 A line sent from the client to the server is called a CommandLine.

 A line sent from the server to the client is called a ResponseLine.

 In examples the terminating <CR><LF> is not shown !

 The protocol is case sensitive.

6.2.1 Tags

The first 5 characters of each CommandLine represent a tag.
The client generates these tags. The client uses two types of tags:

 CommandTag

 EventTag

A CommandTag is a 5 digit decimal number with leading zeros present.
The number must be between 00001 and 99999.
Command tags are considered to be numbers in the range of 00001 and 99999.

The client must make sure, that command tags sent to the server are unique while the server
processes the commands related to the tags. The easiest way to accomplish this is to
increment the tag number each time a new command is send.
Examples of Event tags created by the client:

I++ DME Version 1.3.1.draft 35

 04711 // tag is ok
 01710 // ok
 00020 // ok
 20 // error; only 2 digits
 00000 // error; out of range must be >=00001 and <=99999

An EventTag is a 4 digit decimal number that is preceded by the character E (ASCII code=69).

The number must be between 0001 and 9999.
Event tags are considered to be enums in the range of E0001 and E9999.

To differ in the command layer also between the normal and fast queue, commands for the
fast queue end with an upper case E. The reason is to be independent from the transport layer.

The client must make sure, that event tags send to the server are unique while the server
processes the commands related to the event tags. The easiest way to accomplish this is to
increment the tag number each time a new command is send.
Examples of tags created by the client:

 E3333 // tag is ok
 E0456 // ok
 E0000 // error; out of range must be >=1 and <=9999
 E20 // error; only 3 characters
 A4711 // error; illegal first character

As for a CommandLine, the first 5 characters of a ResponseLine represent a tag (ResponseTag).
During normal command processing by the server it will use the tag received from the client
as ResponseTag so the client can use this tag to relate the ResponseLine to a CommandLine.
 In addition the server can send a ResponseLine using ResponseTag E0000 for reporting
unsolicited events to the client. The “Illegal tag” error message should be reported by the
E0000 tag.

6.2.2 General line layout

From now on we will use

 Command as a synonym for CommandLine

 Response as a synonym for ResponseLine.

6.2.2.1 CommandLine

The first 5 characters in each CommandLine represent the CommandTag.
The character at column 6 must be a space (ASCII code = 32).
The command starts at column 7.

I++ DME Version 1.3.1.draft 36

Command :== Tag | Etag “ “ Method

6.2.2.2 ResponseLine

The first 5 characters in each Response line represent the ResponseTag.
The character at column 6 must be a space (ASCII code = 32).
The character at column 7 must be one of the following:

 &

 %

 #

 !

The meaning of the character at column 7 is explained later.
The character at column 8 must be a space when the line length is greater than 7.
Example:
00004 # X(99.93), Y(17.148)

If not explicitly stated in a command, the order of the return data is left to the server
implementation.
Therefore

00004 # Y(17.148), X(99.93)

is an equivalent response.
In addition the returned data must exactly match the requested data. No data may be omitted
and no data may be added to the response line.

6.2.2.3 Definitions

In the following we will use

 Ack as a synonym for a ResponseLine where the 7th character is a &

 Transaction complete

 as a synonym for a ResponseLine where the 7th character is a %

 Data as a synonym for a ResponseLine where the 7th character is a #

 Error as a synonym for a ResponseLine where the 7th character is a !

6.2.3 Transactions

The basic protocol unit is a transaction. For each transaction, the client will create a tag. The
tag identifies the transaction.

I++ DME Version 1.3.1.draft 37

 Transactions are initiated by the client.

 The same tag is used during a transaction.

 Transactions can overlap.

 A client can start a new transaction only after having received an Ack of the
previous transaction (except StartSession()) from the server.

 When using overlapped transactions, tags sent to the server must be unique.

 When using overlapped transactions and the server is too busy to accept new
transactions it must delay sending the Ack until it is ready to accept a new
transaction.

 When using overlapped transactions, the server must make sure that the Ack, Data
(Error) and Transaction complete are sent back to the client in the right order. This
means, if transaction 00001 is started before transaction 00002, the server is not
allowed to send a Data, Error or Transaction complete from transaction 00002
before the Transaction complete from transaction 00001. At any point in time the
server is allowed to send a line starting with an EventTag.

A transaction is complete after the server sends the Transaction complete. If a transaction is
complete, all processing on the driver side related to the transaction has completed.

6.2.3.1 Example

Client to Server Server to Client Comment
00001 Home() Use tag 00001 for home

command, client sends “home”
command

 00001 & Server accepts command (Ack)
 00001 % Server reports transaction

complete

00002 GoTo(X(100)) Move to x=100
 00002 & command accepted (Ack)
 00002 % position reached (Transaction

complete)

00003 GoTo(X(100000)) moving out of limits
 00003 & command accepted
 00003 ! Error(3, 2500,

GoTo, “Machine limit
encountered (Move Out
Of Limits)”)

Error message

 00003 % transaction complete

00004 ClearAllErrors() Clear all server errors
 00004 &
 00004 %

00005 Get(X(), Y()) get position of x, y axis

I++ DME Version 1.3.1.draft 38

 00005 &
 00005 # X(99.93),

Y(17.148)
x and y position

 00005 % Transaction complete

6.2.4 Events

At any point in time the server may notify that something happened by sending an event to the
client.
If the event is triggered by a transaction, the tag used is that of the transaction.
The server must first send an Ack before it can send the Response with the EventTag.
This Response can then be sent before or after the Transaction complete.
If an event is triggered by a command, f.I. ErrStatusE, the server handles the execution of the
command (responding of the error status) with a higher priority. The Transaction complete is
responsed in the order of the standard queue.
At any point in time the server can send a Response with EventTag E0000 to inform the client that
something unsolicited has happened in the server.

6.2.4.1 Examples

Unsolicited error message

Client to Server Server to Client Comment

 E0000 ! Error(3, 500,

HealthCheck,
“Emergency Stop”)

An unsolicited error message
occurs

 In this example the server must
display error and inform user
what to do

Assume the user moves the machine using joysticks and the server wants to report this
movement.

Client to Server Server to Client Comment
00048 EnableUser()
 00048 &
 00048 %

E0553
OnMoveReportE(Time(1),Dis(2
0),X(), Y(), Z())

 E0553 &
 E0553 %
 Now the user moves the machine
 E0553 # X(50), Y(433),

I++ DME Version 1.3.1.draft 39

Z(500)
 E0553 # X(50), Y(433),

Z(520)

 ...
 Now the client wants to stop

reporting of the server and
sends

00049 StopDaemon(E0553)
 00049 &
 E0553 # X(50), Y(433),

Z(530)

 00049 % no events with tag E0553 may
follow

6.2.5 Errors

If the server detects an error condition, it will report the error using the tag of the Command it was
executing when the error was detected. In case of error severity class equal or greater 2 the
server will abort all pending transactions.
In this case the client must invoke the ClearAllErrors() method before the server can
continue processing commands.
Further details regarding error handling are given in Section 8.

I++ DME Version 1.3.1.draft 40

6.3 Method Syntax

The reference for this description is the C++ class definition that is part of this documentation.
Please note that in the class description the first argument of all methods is Tag. This argument
is converted into a CommandTag or EventTag as described before and is therefore not part of this
documentation (see Server::FormatTag() method).

6.3.1 Server Methods

A session defines the time period after the client has sent a StartSession() until the client sends an
EndSession() to the server.
Several states are preserved when the server is shut down, e.g. the active tool.
If no session is active, the server will accept only StartSession() and EndSession() commands.
If a Session is active and a StartSession is received an error is generated (501, “Unsupported
command”).
If an EndSession is received while no session is active, this command will do nothing.
This handling will guarantee that sending an EndSession() followed by a StartSession will start a
new session in any case.

6.3.1.1 StartSession()

After having completed the connection between client and server on the TCP/IP level (see section

9.2) the StartSession method initiates the connection between client and server. The
server can be sure that the client will invoke StartSession() only once during a
session.

 StartSession()

Parameters None.
Data None.
Errors None.
Remarks The server may for example use this method to perform initial checks
 Like which tool is active, …

The method does not perform any initializations, which means that the server is in a state that was
left after power up or in a state that was left over from the previous session. The client can be sure
that no events or daemons are pending from the session before.
During StartSession() the default arguments for
OnPtMeasReport is set to (X(),Y(),Z())
OnScanReport is set to (X(),Y(),Z(),Q()).

6.3.1.2 EndSession()

The client invokes this method to end a session between client and server.
The client must close the TCP/IP connection (see section 9.3) after the transaction is complete.

 EndSession()

I++ DME Version 1.3.1.draft 41

Parameters The method has no parameters.
Data None.
Errors No errors are returned.
Remarks The method must make sure that all daemons are stopped and no events are sent

after it completes. The following states of the server are preserved upon connection
of the next client:

 Active tool
 Active coordinate system

6.3.1.3 StopDaemon(..)

The client invokes this method to stop a daemon identified by its EventTag.

 StopDaemon(EventTag)

Parameters EventTag of daemon to be stopped.
Data None.
Errors 0513: Daemon Does Not Exist.

6.3.1.4 StopAllDaemons()

The client invokes this method to stop all daemons.

 StopAllDaemons()

Parameters None.
Data None.
Errors None.
Remarks The method must make sure that all daemons are stopped and no events are sent

after it completes.

6.3.1.5 AbortE()

The client invokes this method to abort all pending transactions and if possible the current one.

 AbortE()

Parameters None.
Data None.
Errors None.
Remarks The client must invoke the ClearAllErrors() method before the server will process

new methods.
 On receiving an AbortE command, the server must:
 (a) stop all motion as soon as possible,
 (b) stop executing any currently executing commands,
 (c) not start any pending commands (those for which an Ack has been sent but for

which execution has not yet started), and
 (d) stop sending data responses for any currently executing commands.

I++ DME Version 1.3.1.draft 42

 For currently executing commands, the server must send either a
TransactionComplete (for all event commands and any other commands that are
completed) or an error "Transaction aborted" for non-event commands that are not

 complete. For pending commands, the server must send an error
 “Transaction aborted".

The AbortE command itself is not to be reported complete until the responses just
described have been sent. After sending an AbortE command, the client must not
send any other commands until a TransactionComplete has been received in
response to the AbortE. The next command sent by the client must be a
ClearAllErrors command. If the server receives any other command following an
AbortE, it must send an error response using error 0514 "Use ClearAllErrors to
continue".

6.3.1.6 GetErrorInfo(..)
The client invokes this method to retrieve the error-information stored in the server.

 GetErrorInfo(..)

Parameters Error-Number.
Data String
Errors None.

6.3.1.7 ClearAllErrors()

The client invokes this method to enable the server to recover from an error.

 ClearAllErrors()

Parameters None.
Data None.
Errors None.

Examples

Client to Server Server to Client Comment
00051 GoTo(X(1000))
 00051 &
00052 GoTo(Y(300))
 00052 &

 The client wants to abort the

moves and sends
E0053 AbortE()
 E0053 &
 00051 !

Error(2,0006,GoTo,“Tran
saction aborted”)

 00051 %
 00052 !

I++ DME Version 1.3.1.draft 43

Error(2,0006,GoTo,“Tran
saction aborted”)

 00052 %
 E0053 %

 If the client now sends
00054 Get(X())
 00054 &
 00054 ! Error(2,0511,Get,

“Error processing
method”)

 00054 ! Error(2,0514,Get,
“Use clear all errors to
continue”)

 00054 % the server will still be in an
error state

00055 ClearAllErrors()
 00055 &
 00055 % the server is now ready to

accept new method calls

00056 Get(X())
 00056 &
 00056 # X(23)
 00056 %

I++ DME Version 1.3.1.draft 44

6.3.1.8 Information for handling properties

Each object of the system has to provide functionality to support the following functions.
- GetProp(), GetPropE()
- SetProp()
- EnumProp(), EnumAllProp()

6.3.1.9 GetProp(..)

The client uses this method to query settable properties of the system. F.I. speed, but not

Speed.Max…

 GetProp(..)

Parameters The argument list is an enumeration of one or more of the following methods.

 Tool.PtMeasPar.Speed()
 Tool.GoToPar.Accel()
 or other methods that return properties.

Data The format is defined by the method enumerated.
Errors Errors of the enumerated methods.

6.3.1.10 GetPropE(..)

GetPropE is handled with a high priority. See GetProp().

6.3.1.11 SetProp(..)

The client uses this method to set properties of the system.

 SetProp(..)

Parameters The argument list is an enumeration of one or more of the following methods.

 Tool.PtMeasPar.Speed(100)
 Tool.GoToPar.Accel(10)
 or other methods that set properties.

Data None
Errors Errors of the enumerated methods.
 If a value is out of range the defined warning 0504 must be returned.

6.3.1.12 EnumProp(..)

The client uses this method to query properties of the system. It returns the name of the type of a

property.

 EnumProp(..)

I++ DME Version 1.3.1.draft 45

Parameters A pointer to an object, e.g. parameter block.

 Tool.PtMeasPar()
 Tool.GoToPar()
Data Returns the names of all values
 The client can use the type information provided to check,
 if the returned name is a value or a property.
 The property type is returned

“Number”
“String”

 “Property” ! Means class which has own properties
 See example chapter 7.7.
Errors Errors of the enumerated methods.

6.3.1.13 EnumAllProp(..)

The client uses this method to query properties of the system. It returns the names and types of the

immediate children of a property.

 EnumAllProp(..)

Parameters A pointer to an object, e.g. parameter block.

 Tool()
Data Returns the names of all values and the names of all child properties
 of the property.
 The client can use the type information provided to check,
 if the returned name is a value or a property.
 The property type is returned

“Number”
“String”

 “Property”
 See example chapter 7.8.
Errors Errors of the enumerated methods.

I++ DME Version 1.3.1.draft 46

6.3.2 DME Methods

6.3.2.1 Home()

The client uses this method to home the machine. The server must be homed before the client can
invoke methods that move the machine.
When the home command is executed, the server will move the machine to its home position.
The home position for a given machine is specific to the machine and is implementation dependent.
The home position for a given machine is fixed. Any type of in-range axis motion may occur
during execution of Home. The only requirement is that the final position be the home position.

 Home()

Parameters None.
Data None.
Errors 1005: Error During Home.

6.3.2.2 IsHomed()

The client uses this method to query if all necessary machine axes are homed.

 IsHomed()

Parameters None.
Data IsHomed(Bool).
 Bool = 0 not homed
 Bool = 1 is homed
Errors None.
Remark

6.3.2.3 EnableUser()

The client uses this method to enable user interaction with the machine.

 EnableUser()

Parameters None.
Data None.
Errors None.
Remarks The method will have arguments in the next version to allow the client to enable

only a subset of the user interface elements like specific keys or joysticks only.

6.3.2.4 DisableUser()

The client uses this method to disable user interaction with the machine.

 DisableUser()

I++ DME Version 1.3.1.draft 47

Parameters None.
Data None.
Errors None.
Remarks The server calls this method implicitly whenever the client calls a method that

physically moves the machine.

6.3.2.5 IsUserEnabled()

The client uses this method to query if the user is enabled.

 IsUserEnabled()

Parameters None.
Data IsUserEnabled(Bool).
 Bool = 0 user is disabled
 Bool = 1 user is enabled
Errors None.
Remarks The client should check if the user is enabled after each StartSession() and not rely

on a default.

6.3.2.6 OnPtMeasReport(..)

The client uses this method to define which information the server should send to the
client when the server has completed the PtMeas command.

 OnPtMeasReport (..)

Parameters The enumeration may not be empty.
 See parameters used at command Get() , section 6.3.2.11. In addition to the

arguments allowed at “Get(..)” command, also IJK() and EffectiveToolRad() are
possible. Please notice that this property is not a static value of the Tool. It depends
on the actual circumstances of the actual measurement (probing direction …).

Data None.
Errors 0510: Bad Property .
Remarks The server will send a report after the PtMeas command has completed.
 The results of an PtMeas are defined by the last OnPtMeasReport command and

have the tag of the related PtMeas command.
 If no OnPtMeasReport is set in the current session the server has to use the default

(see StartSession).

6.3.2.7 OnMoveReportE(..)

This is a command for the Fast Queue!
The client uses this method to define which information the server should send to the
client while the machine is moving by starting a daemon.

 OnMoveReportE (..)

Parameters Time(s), Dis(d), …
 See parameters used at command Get() , section 6.3.2.11.

I++ DME Version 1.3.1.draft 48

Data None.
Errors 0510: Bad Property.
 0515: Daemon already exists
Remarks The server will send a report if the time interval s has elapsed or the machine has

moved more than d millimeters, and in any case the numbers of responses per
second must not exceed 10.

 The value of Time must not be less than 0.1.
 The client has the responsibility to end the OnMoveReport by an StopDaemon() or

StopAllDaemon before starting a new one.
 The multiple responds of an OnMoveReportE are returned with the tag of the valid

OnMoveReportE command, because it is established by a daemon.

Example OnMoveReportE(Time(0.5), Dis(0.2), X(), Y(), Z())

6.3.2.8 GetMachineClass()

The client uses this method to query the type of machine.

 GetMachineClass()

Parameters None.

Data One of the following must be returned:
 GetMachineClass(“CartCMM”)
 GetMachineClass(“CartCMMWithRotaryTable”)

Errors None .

6.3.2.9 GetErrStatusE()

This is a command for the Fast Queue!
The client uses this method to query the error status of the server.

 GetErrStatusE()

Parameters None.
Data ErrStatus(Bool).
 Bool = 1 in error
 Bool = 0 ok
Errors None .

6.3.2.10 GetXtdErrStatus()

The client uses this method to query the extended error status of the server.

 GetXtdErrStatus()

Parameters None.
Data The server may send one or more lines of status information like

I++ DME Version 1.3.1.draft 49

 IsHomed(1)
 IsUserEnabled(0)
 …
Errors as well as one or more Errors like
 1009: Air Pressure Out Of Range
 0512: No Daemons Are Active.

6.3.2.11 Get(..)

The client uses this method to query the position of the active tool. Also temperatures and
calibrated tool properties can be requested.

 Get(..)

Parameters The argument list is an enumeration of one or more of the following methods.

 X()
 Y()
 Z()
 Tool.A()
or other methods that return axis information. Also temperatures and other dynamic properties of

the system can be requested.

Data The format is defined by the method enumerated.
Errors Errors of the enumerated methods.
Remarks The parameters request able with “Get” cannot be set directly.

6.3.2.12 GoTo(..)

The client uses this method to perform a multi axis move to the target position using the active tool.

 GoTo(..)

Parameters The argument list is an enumeration of one or more of the following methods.

 X(..)
 Y(..)
 Z(..)
Or methods that change tool properties (like Tool.A(), Tool.B()).
Data None
Errors Errors of the enumerated methods.
Implicit Tool.GoToPar
Remarks The server will move the machine, so that all axes enumerated will start to move at

the same time. The movement is controlled by the Tool.GoToPar block (Speed,
Acceleration) if possible. The ready will be send when the last axis reaches it target
position.

 Sets implicitly DisableUser(). This mode is active until it is ended by an explicit
EnableUser() command or an error.

I++ DME Version 1.3.1.draft 50

 If any of X(), Y(), Z(), Tool.A()… is not included as an argument, its value after the
GoTo() is executed must be the same as its value just before the GoTo() was
executed. If possible the DME has to use the current nominal value of the controller
to prevent drifting by multiple usage.

6.3.2.13 PtMeas(..)

The client uses this method to execute a single point measurement using the active tool.
Parameters necessary (Speed, Approach distance, ..) are defined by the active tool

 PtMeas(..)

Parameters The argument list is an enumeration of one or more of the following methods.

 X(..)
 Y(..)
 Z(..)
 IJK(..)

Data As defined by OnPtMeasReport() method
Errors 1006: Surface Not Found.
Implicit Tool.PtMeasPar
 Tool.GoToPar
Remarks The PtMeas() method is processed by the server as follows:

 If an IJK vector is present

• The vector I, J, K is normalized

• A new position is found by moving in the I,J,K direction from
the X,Y,Z nominal position by the following values:

Part.Approach()
Tool.Approach()
Tool.Radius() (in the drawing assumed zero)

I++ DME
 Version 1.3.1.draft

Nominal Point
=Nominal Part

Actual
Part

Approach
Point

Approach
[Tool]

Approach
[Part]

Search
[Part]

Search
[Tool]

Retract
[Tool] (>0)

Retract
[Tool] (<0)

Retract
Point

Vgoto

Vptmeas

0

Geometry

Speed

Vgoto
51

This new position is called approach position.

• The server moves the machine to the approach position. This
move is executed like an implicit GoTo().

• Another new position is found by moving from the X,Y,Z
nominal position opposite the I,J,K direction by the value of
Tool.Search(). This position is called the end of search position.

• The server moves the machine towards the end of search position
using the PtMeasPar of the Tool().

• If the tool has part contact during this move the server latches the
position of the center of the ActTool and reports to the client as
defined by OnPtMeasReport().

• After contact the server will move the machine according to the
value of Tool.Retract() using Tool.GoToPar for the move.
If Tool.Retract() is greater or equal zero, the server will shift the
contact position in the IJK direction by this value and move the
machine to this position. If the Tool.Retract() is less than zero,
the server will move back to the approach position as defined
before.

 If an IJK vector is not set by this command

• The I, J, K vector is defined as the direction from the nominal
point X, Y, Z to the last position before invoking this method.
F.I. the position of the last GoTo command.

• The following procedure is executed as if the I, J, K, was given
by the client. See above.

Note that the end of search position may be outside the move limits, but the part surface inside. In
this case the server will report success if the surface is still inside or ErrorMoveOutOfLimits. This
behavior differs from the GoTo() method.
If any of X(), Y(), Z()… is not included as an argument, its value after the PtMeas() is executed
must be the same as its value just before the PtMeas() was executed. If possible the DME has to use
the current nominal value of the controller to prevent drifting by multiple usage.
The argument IJK(..) without any linear axis coordinates is currently not allowed.
Sets implicitly DisableUser().

6.3.2.14 Information for Tool Handling

To handle special tool behaviors the following tools are defined (predefined, reserved names)

 BaseTool ! Holds the default DME capabilities, e.g. speed, acceleration.
 It is not visible when using EnumTools().
 RefTool ! Supports all standard tool properties
 NoTool ! Can only move but not measure

I++ DME Version 1.3.1.draft 52

 UnDefTool ! It is also not visible by EnumTools().

6.3.2.15 Tool()

The client uses this method to select a pointer to the actual activated tool. It can also be used as a

pointer to NoTool! See Example 7.6.

 Tool()

Parameters None.
Data None.
Errors

6.3.2.16 FindTool(..)

The client uses this method to get a pointer to a tool with a known name. See Example 7.7.

 FindTool(“Too1”)

Parameters Name of tool to search for.
Data No data are direct returned, but after using this command the pointer FoundTool is

usable. See FoundTool chapter 6.3.2.17 and example 7.7.
Errors 1502: Tool Not Found. (FoundTool.Name(“UnDefTool”))

6.3.2.17 FoundTool()

This method acts as a pointer to a tool with a known name selected by FindTool(“xxx”).

FoundTool() is only valid after a call to FindTool(), otherwise it is “UnDefTool”.
See Example 7.7.

 FoundTool()

Parameters None.
Data None.
Errors 1503, “Tool not defined”
Remark Pointer can also be NoTool!

6.3.2.18 ChangeTool(..)

The client uses this method to change the tool by ProbeChanger or manually.

 ChangeTool(“Tool2”)

Parameters Name of the tool to activate.
Data None.
Errors 1502: Tool Not Found.
Remark If an error occurs during the execution of ChangeTool(), the client is responsible to

ask the server which tool is active then.

6.3.2.19 SetTool(..)

I++ DME Version 1.3.1.draft 53

The client uses this method to force the server to assume a given tool is the active tool.

 SetTool(“Tool2”)

Parameters Name of the tool to set.
Data None.
Errors 1502: Tool Not Found.
Remark If an error occurs during the execution of SetTool(), the client is responsible to ask

the server which tool is active then.

The server assumes the active tool is “Tool2”.

6.3.2.20 AlignTool(..)

The client uses this method to force the tool to orientate according to the given vector(s).

 AlignTool(i1,j1,k1, alpha)

 AlignTool(i1,j1,k1,i2,j2,k2, alpha, beta)

Parameters One normalized vector (i1, j1, k1). This vector is anti parallel to the main axis of the

tool (away from the surface).

 Two normalized vectors (i1, j1, k1, i2, j2, k2). The first vector is anti parallel to the

main axis of the tool (away from the surface). The second vector describes the
orientation in the working plane.

 Maximal allowed error angles (alpha, beta) in which the found orientation may

differ from the desired one. In case the angle differs, ToolNotFound is returned. In
case alpha or beta are zero no error check is performed.

Data Returns vectors (same number as set) which describe the reached alignment.
Errors 1502: Tool Not Found.
Remark Each tool must implement its own primary (main axis) and secondary alignment

direction. After executing AlignTool the primary direction of the tool is anti parallel
to (i1,j1,k1) and the secondary direction is parallel to (i2,j2,k2).

6.3.2.21 GoToPar()

This method acts as a pointer to the GoToParameter block of the DME.

 GoToPar()

Parameters None.
Data pointer.
Errors None

I++ DME Version 1.3.1.draft 54

Remark

6.3.2.22 PtMeasPar()

This method acts as a pointer to the PtMeasParameter block of the DME.

 PtMeasPar()

Parameters None.
Data pointer.
Errors None
Remark

6.3.2.23 EnumTools()

The client uses this method to query the names of the available tools. It returns a list of names.

 EnumTools()

Parameters None
Data Returns the names of all values. F.I.:
 00014 &
 00014 “RefTool”
 00014 “NoTool”
 00014 “NormalTool”
 00014 “Conf1.Tip1”
 00014 “Conf1.Tip2”
 …
 00014 “SpecialTool”
 00014 %
Errors

6.3.2.24 Q()

The client uses this property to query the quality of a measurement.

I++ DME Version 1.3.1.draft 55

 Q()

Parameters None.
Data Q(q).
Errors 1503: Tool Not Defined
 0509: Bad Parameter
Remarks This method can only be invoked as an argument of a OnReport method.
 The Q() property is a numeric value between 0 and 100 indicating the “quality” of

the measured point. A value of 0 defines a “good” point. Depending on the tool used
to scan, values from 1 to 100 indicate a lower quality and reliability of the points. A
value of 100 marks bad points.

 If points are out of the tools measuring range, the DME may decide to flag them as
“bad points” or stop the scan with an error.

6.3.2.25 ER()

The client uses this property to query the effective tool radius actual during a measurement.

 ER()

Parameters None.
Data ER(EffectiveToolRad).
Errors 0509: Bad Parameter
Remarks This method can only be invoked as an argument of a OnReport method. Please

notice that this property is not a static value of the Tool. It depends on the actual
circumstances of the actual measurement (probing direction …).

I++ DME Version 1.3.1.draft 56

6.3.3 CartCMM Methods

Each CartCMM implements a cartesian machine coordinate system.
Based on this coordinate system the following depend on it:
 MachineCsy
 MoveableMachineCsy
 MultipleArmCsy
 PartCsy

The multiple arm transformation is implemented also on bridge type or single arm machines.
* The RotaryTableCsy (handling rotary table) and the MoveableMachineCsy (handling movable

measurement equipment, mechanical or optical) are listed here because of
consistency reasons of the transformation chain.

Picture 21: Transformation chain model

PartCsy

M

PartCsy

As example the
 arm coordinates

I++ DME Versio
RotaryTableCsy *
MultipleArmCsy

oveableMachineCsy *

Machine incl.
Tool offset

transformation of a point in m
 (x’,y’,z’) is calculated as fol

n 1.3.1.draft
SetCoordSystem
achine coordinates (x, y, z) to a point in multiple
lows.

 57

−
−
−

=

0
0
0

333231
232221
131211

'
'
'

zz
yy
xx

mmm
mmm
mmm

z
y
x

In this example x0, y0, z0 and the coefficients m11 ... m33 are calculated as follows from the

arguments of the SetCsyTransform(MultipleArmCsy, X0, Y0, Z0, Theta, Psi, Phi)

To create the Euler Angles Theta, Phi, Psi and vice versa the rotation matrix see Appendix A.4.2.

6.3.3.1 SetCoordSystem(..)

The client uses this method to select the coordinate system it wants to work with.

 SetCoordSystem(..)

Parameters One of the following:
 MachineCsy
 MoveableMachineCsy
 MultipleArmCsy
 PartCsy.
Data None.
Errors 0509: Bad Parameter.
Remarks The parameters are considered to be enums and must not be enclosed in double

quotes.

6.3.3.2 GetCoordSystem()

The client uses this method to query the server which coordinate system is selected..

 GetCoordSystem()

Parameters None.
Data CoordSystem(Arg).
 Arg can be one of the following:
 MachineCsy
 MoveableMachineCsy
 MultipleArmCsy
 PartCsy.
Errors None.

6.3.3.3 GetCsyTransformation(..)

The client uses this method to get the enumerated coordinate transformation back from the server.

 GetCsyTransformation(Enumerator)

Parameters Enumerator: PartCsy
 JogDisplayCsy
 JogMoveCsy

I++ DME Version 1.3.1.draft 58

 SensorCsy
 MoveableMachineCsy
 MultipleArmCsy.

Data GetCsyTransformation(X0, Y0, Z0, Theta, Psi, Phi).
Errors None.
Remarks The definition of the relation between transformation matrix and parameters is given

in the C++ class definition. See Appendix A.4.2.

6.3.3.4 SetCsyTransformation(..)

The client uses this method to replace the enumerated coordinate transformation.

 SetCsyTransformation(Enumerator, X0,Y0,Z0, Theta, Psi, Phi)

Parameters Enumerator: PartCsy
 JogDisplayCsy
 JogMoveCsy
 SensorCsy
 MoveableMachineCsy
 MultipleArmCsy.

 X0, Y0, Z0 define the zero point of the machine coordinate system in part

coordinates. Theta, Psi and Phi are Euler angles that define the rotation matrix of
the transformation.

Data None.
Errors 1007: Theta Out Of Range.
Remarks See Section 10.4.2. Theta must be in the range of 0..180 degrees. Psi and Phi should

be normalized (modulo 360) by the server.

6.3.3.5 X()

 X()

Parameters None.
Data X(x).
Errors 1503: Tool Not Defined
 0509: Bad Parameter.
Remarks This method can only be invoked as an argument of a Get or OnReport method.

6.3.3.6 Y()

 Y()

Parameters None.
Data Y(y).
Errors 1503: Tool Not Defined
 0509: Bad Parameter.
Remarks This method can only be invoked as an argument of a Get or OnReport method.

I++ DME Version 1.3.1.draft 59

6.3.3.7 Z()

 Z()

Parameters None.
Data Z(z).
Errors 1503: Tool Not Defined
 0509: Bad Parameter.
Remarks This method can only be invoked as an argument of a Get or OnReport method.

6.3.3.8 IJK()

 IJK()

Parameters None.
Data IJK(i,j,k).
Errors 0508: Bad Context.

Remarks i,j,k define a direction vector in the actual coordinate system. The vector is not

necessarily normalized. Its values are tool dependent. If the client normalizes the
vector it should point out of the part material.

 This method can only be invoked as an argument of OnPtMeasReport().

6.3.3.9 X(..)

 X(x)

Parameters target x position.
Data None. …
Errors 2500: Machine Limit Encountered
 2504: Collision
 0508: Bad Context.
Implicit Tool.GoToPar
Remarks This method can only be invoked as an argument of a GoTo or PtMeas method. If

the server detects a MoveOutOfLimits condition, the machine will not move.

6.3.3.10 Y(..)

 Y(y)

Parameters target y position.
Data None. …
Errors 2500: Machine Limit Encountered
 2504: Collision
 0508: Bad Context.
Implicit Tool.GoToPar
Remarks This method can only be invoked as an argument of a GoTo or PtMeas method. If

the server detects a MoveOutOfLimits condition, the machine will not move.

I++ DME Version 1.3.1.draft 60

6.3.3.11 Z(..)
 Z(z)

Parameters target z position.
Data None. …
Errors 2500: Machine Limit Encountered
 2504: Collision
 0508: Bad Context.
Implicit Tool.GoToPar
Remarks This method can only be invoked as an argument of a GoTo or PtMeas method. If

the server detects a MoveOutOfLimits condition, the machine will not move.

6.3.3.12 IJK(..)

 IJK(i,j,k)

Parameters i,j,k define the X,Y,Z values of a vector.
Data None.
Errors 0508: Bad Context.
 1010: Vector Has No Norm.
Remarks i,j,k define a direction vector in the actual DME coordinate system. The vector is not

necessarily normalized. Before using the vector, the server must normalize it. This
method can only be invoked as an argument of another method.

6.3.3.13 R()

The client uses this method to query the position of the rotary table. Implementation in

CartCMMWithRotTbl.

 R()

Parameters None.
Data R(r).
Errors 0509: Bad Parameter.
Remarks This method can only be invoked as an argument of a Get or OnReport method. The

setting of the rotary table must be done by AlignPart!

I++ DME Version 1.3.1.draft 61

6.3.4 ToolChanger Methods

Each CMM implements one instance of the ToolChanger class to install and change tools.
The methods are available, and described here in the DME section,
because there is exactly one instance.

6.3.5 Tool Methods (Instance of class KTool)

Each CMM implements a class KTool to contain the properties of the tool and the methods
to handle them.

6.3.5.1 GoToPar()

This method acts as a pointer to the GoToParameter block of this instance of KTool.

 GoToPar()

Parameters None.
Data pointer.
Errors None
Remark

6.3.5.2 PtMeasPar()

This method acts as a pointer to the PtMeasParameter block of this instance of KTool.

 PtMeasPar()

Parameters None.
Data pointer.
Errors None
Remark

6.3.5.3 ReQualify()

The client uses this method to requalify ActTool.

 ReQualify()

Parameters None, ActTool is used.
Data None.
Errors Error messages during calibration.
Remark

6.3.6 GoToPar Block

I++ DME Version 1.3.1.draft 62

Each parameter block contains information for
Speed and
Accel.

Each of these physical values are split in
Min
Max
Act (Actual) and
Def (Default).

There is the parameter-block of the active tool accessible via the DME and a parameter-block
associated with each tool. The access to the parameter-blocks is described in the object model
5.9 and in the header file of toolchanger.h. The methods to access the values are described in
the examples 7.7
The application cannot set the actual values outside the range defined by Min and Max values.
The application cannot change Min and Max. If trying to set the actual value outside the
defined range, the Max or Min value is used.

6.3.7 PtMeasPar Block

Each parameter block contains information for

Speed
Accel
Approach
Search
Retract.

Each of these are of the type parameter (see object model) and have the substructure as
follows. Only the Act values can be set by the client. This is the reason for the direct access
possibility.

Min
Max
Act (Actual) and
Def (Default).

There is the parameter-block of the active tool accessible via the DME and a parameter-block
associated to each tool. The access to the parameter-blocks is described in the object model
5.9 and in the header file of toolchanger.h. The methods to access the values are described in
the examples 7.7 and 7.8.
The application cannot set the actual values outside the range defined by Min. and Max
values. The application cannot change Min and Max. If trying to set the actual value outside
the defined range, the Max or Min value is used. In this case the warning number 0504
“Parameter out of range” must be returned.
The ABCGoToPar and ABCPtMeasPar are mentioned in the full object model. This is
because of symmetry reasons. Because actual rotational heads cannot be controlled in that
manner it is not necessary to implement this actually.

I++ DME Version 1.3.1.draft 63

6.3.8 A(), B(), C()

The client uses this method to query one or more rotational axis of the ActTool. The reference
to the rotational axis can be used single. Implementation in ToolAB or ToolABC.

 A()

Parameters None.
Data A().
Errors 1503: Tool Not Defined
 0509: Bad Parameter.
Remarks This method can only be invoked as an argument of a Get or OnReport method. The

usage from the interface is Tool.A()… See examples chapter 7.

6.3.9 A(..), B(..), C(..)

 For internal and symmetry reasons. The setting of the rotational axis should be done
by AlignTool. Only this handling guarantees compatibility between the
implementations!

 A(a)

I++ DME Version 1.3.1.draft 64

7 Additional Dialog Examples

7.1 StartSession

Client to Server Server to Client Comment
 Server and Client must be

booted up previously
00001 StartSession Client connects to server
 00001 & Server sends acknowledge
 00001 % Server sends transaction

complete

7.2 Move 1 axis

Client to Server Server to Client Comment
00009
SetCsyTransformation(PartCsy,
10, 20,30, 0, 0, 0)

 Set transformation for part
coordinate system

 00009 &
 00009 %
00010
SetCoordSystem(PartCsy)

 Select transformation to and
from part coordinate system

 00010 &
 00010 %

00011 GoTo(X(100)) Move now in part coordinate
system

 00011 &
 00011 %

7.3 Probe 1 axis

Client to Server Server to Client Comment
00014
OnPtMeasReport(X(),Y(),Z(),To
ol.A())

 Client defines format for
probing result. Valid for every
PtMeas command from now
on.

 00014 &
 00014 %
00015 PtMeas(X(200)) Uses standard method in

CartCMM
 00015 &
 00015 #

X(199.998),Y(250.123),Z
(300.002),Tool.A(45)

Probing result from server

 00015 %

I++ DME Version 1.3.1.draft 65

7.4 Move more axes in workpiece coordinate system

Client to Server Server to Client Comment
00009
SetCsyTransformation(PartCsy,10,
20,30, 0, 0, 0)

 Set transformation for part
coordinate system

 00009 &
 00009 %
00010 SetCoordSystem(PartCsy)

 Select transformation to part
coordinate system

 00010 &
 00010 %
00011 Goto(X(100),Y(150),Z(200))
00011
Goto(X(100),Y(150),Z(200),R(180))

 Move with more axes
Alternatively

 00011 &
 00011 %

7.5 Probe with more axis

Client to Server Server to Client Comment
00014
OnPtMeasReport(X(),Y(),Z(),To
ol.A())

 Valid for every PtMeas
command

 00014 &
 00014 %
00015
PtMeas(X(200),Y(250),Z(300))
00015
PtMeas(X(200),Y(250),Z(300),I
JK(0,0,1))
00015
PtMeas(X(200),Y(250),Z(300),I
JK(0,0,1),R(180))

 Uses standard method in
CartCMM
Alternatively, with
approaching vector

Alternatively, with
approaching vector and rotary
table

 00015 &

 00015 #
X(199.998),Y(250.123),Z
(300.002),Tool.A(45)

Result

 00015 %

7.6 Set property

Client to Server Server to Client Comment

I++ DME Version 1.3.1.draft 66

00015
SetProp(Tool.PtMeasPar.Speed(
100))

 Set probing speed of active
tool

 00015 &
 00015 %

7.7 Get, read property

All properties that are represented as strings are exchanged using double-quotes, e.g. “This is
my probe”

Client to Server Server to Client Comment
00014
EnumProp(Tool.PtMeasPar())

 Get ActTool’s PtMeas
Property list

 00014 &
 00014 # “Speed”,

“Number”
As a method to have direct
access to the actual value,
internal call of Speed.Act()

 00014 # “Accel”,
“Number”

 00014 # “Approach”,
“Number”

 00014 # “Speed”,

“Property”
As a pointer to the sub
structure

 00014 # “Accel”,
“Property”

 00014 # “Approach”,
“Property”

 00014 %

00015
GetProp(Tool.PtMeasPar.Speed(
), Tool.PtMeasPar.Retract())

 Request for getting active
probing speed and retract of
active tool

 00015 &
 00015 #

Tool.PtMeasPar.Speed(10
0),
Tool.PtMeasPar.Retract(2
.0)

 00015 %

I++ DME Version 1.3.1.draft 67

00016 FindTool(“Probe1”) Search pointer to Probe 1
 00016 &
 00016 %
00017
GetProp(FoundTool.PtMeasPar.
Speed())

 Get Probing speed of Probe1

 00017 &
 00017 #

FoundTool.PtMeasPar.Sp
eed(100)

 00017 %

7.8 EnumAllProp

Client to Server Server to Client Comment
00014
EnumAllProp(Tool.PtMeasPar()
)

 Get ActTool’s PtMeas
Property list

 00014 &
 00014 # “Speed”,

“Number”
Internal call of Speed.Act()

 00014 # “Accel”,
“Number”

 00014 # “Approach”,
“Number”

 00014 # “Speed.Max”,
“Number”

First branch of sub tree

 00014 # “Speed.Min”,
“Number”

 00014 # “Speed.Act”,
“Number”

 00014 # “Speed.Def”,
“Number”

 00014 %

I++ DME Version 1.3.1.draft 68

8 Error Handling

• Each transaction can generate multiple error messages.
• These messages are headed by the same tag number.

8.1 Classification of Errors

Please note that all error numbers are UnsInt (unsigned integers).

F1 :== UnsInt
F2 :== UnsInt
F3 :== String
Text :== String

ErrorResponse :== (see 6.1.4.2)

Tag ! Error(F1, F2, F3, Text)

F1: Error severity classification

0: Info

1: Warning
2: Error, client should be able to repair the error
3: Error, user interaction necessary
9: Fatal server error
Only errors with classification higher or equal 2 require ClearAllErrors().

F2: Error numbers, 0000-4999, defined by I++ DME
 5000-8999 definable from server
 9000-9999 definable from client

F3: I++ recommends to serve here the name of the error causing method. This means the
name of the function in the server implementation that reported the error.

Text: The text string must be the text string shown in section 8.2 for the error number given in
the F2 field.

8.2 List of I++ predefined errors

Classification in Field F2
0000-0499 Protocol, syntax error
0500-0999 Error generated during execution in DME (see object model)
1000-1499 Error generated during execution in CartCMM... (see object model)
1500-1999 Error generated during execution in ToolChanger (see object model)
2000-2499 Error generated during execution in Tool... (see object model)
2500-2999 Error generated during execution in Axis (see object model)

Defined errors:

I++ DME Version 1.3.1.draft 69

Severity class Error No. Text
0 0000 Buffer full
2 0001 Illegal tag
2 0002 No space at pos. 6
2 0003 Reserved
2 0004 Reserved
2 0005 Reserved
2 0006 Transaction aborted (Use ClearAllErrors To Continue)
3 0007 Illegal character
3 0008 Protocol error
3 0500 Emergency stop
3 0501 Unsupported command
3 0502 Incorrect arguments
9 0503 Controller communications failure
1 0504 Argument out of range
3 0505 Argument not recognized
3 0506 Argument not supported
3 0507 Illegal command
3 0508 Bad context
3 0509 Bad argument
3 0510 Bad property
3 0511 Error processing method
1 0512 No daemons are active
2 0513 Daemon does not exist
2 0514 Use ClearAllErrors to continue
2 0515 Daemon already exists
3 1000 Machine in error state
2 1001 Illegal touch
9 1002 Axis does not exist
2 1003 No touch
9 1004 Number of angles not supported on current device
3 1005 Error during home
2 1006 Surface not found
3 1007 Theta out of range
3 1008 Target position out of machine volume
3 1009 Air pressure out of range
2 1010 Vector has no norm
3 1500 Failed to re-seat head
3 1501 Probe not armed
3 1502 Tool not found
3 1503 Tool not defined
3 2000 Tool not calibrated
2 2001 Head error excessive force
3 2002 Type of probe does not allow this operation
3 2500 Machine limit encountered [Move Out Of Limits]
3 2501 Axis not active
3 2502 Axis position error
9 2503 Scale read head failure
3 2504 Collision
2 2505 Specified angle out of range
2 2506 Part not aligned

I++ DME Version 1.3.1.draft 70

9 Miscellaneous Information

9.1 Coordination of company related extensions

To allow fast uncoordinated developments tryouts before that, specific name spaces are
reserved..
Company specific extensions can be applied to public methods and properties of the server.
The following mechanism is offered:
Commands in Class DME beginning with
BS. Are Brown&Sharpe proprietary
CZ. Are Carl Zeiss proprietary
WP. Are Wenzel Präzision proprietary
MI. Are Mitutoyo proprietary...
XX. Are company short terms
This extension will be standardized in an upcoming release, which specifically addresses this
functionality. Target is approx. one year after a successful implementation.

The handling of properties is done in the same way
SetProp(XX....)
GetProp(XX....) is XX company proprietary.
Additional short terms can be requested from the I++ DME team.

9.2 Initialization of TCP/IP protocol-stack

After CMM power up the server will create the application port in listen mode.
When the client is started, it will send a connection request to the application port created by
the server. The server will confirm the connection and is now ready to work with the client.

9.3 Closing TCP/IP connection

When the client no longer needs the server it will close the connection.
The driver will then listen on the application port for new incoming connection requests.

9.4 EndSession and StartSession

After re-starting a session all previous defined properties are valid again.

9.5 Pre-defined Server events

The following server events are predefined. Please note that all these events are
transmitted with tag number E0000 to the client.

I++ DME Version 1.3.1.draft 71

9.5.1 KeyPress

Data KeyPress(“NameOfKey”)

Remarks The server sends this event, if the user is enabled and when the user has pushed

button on the jog box.

9.5.2 Clearance or intermediate point set

Data GoTo(…)

Remarks The server sends this event, if the user is enabled and when the user has pushed the

“Clearance Point” button on the jog box.
The GoTo format is defined by OnPtMeasReport(). If vectors are defined they
have to be set to IJK(0,0,0)

9.5.3 Pick manual point

Data PtMeas(…)

Remarks The server sends this event, if the user is enabled and when the user manually picked

a point.
 The PtMeas format is defined by OnPtMeasReport().

9.5.4 Change Tool request

Data ChangeTool(“ToolName”)

Remarks The server sends this event, if the user is enabled and when the user has pushed a

button on the jog box that selects a new tool.
 This event is only a request. The client has to decide if it should send a

ChangeTool() command to execute the change.
 Note that this command does not change the tool.

9.5.5 Set property request

Data SetProp()

Remarks The server sends this event, if the user is enabled and when the user has pushed a

button on the jog box that changes a property.
 This event is only a request. The client has to decide if it should send a SetProp()

command to execute the change.
 Note that this command does not change the property.

9.5.6 Additional defined keys

I++ DME Version 1.3.1.draft 72

 The following NameOfKeys are additional defined:
 “Done” // signals an operation should be finished
 “Del” // delete a function call or a measured point…
 “F1” … “Fn” // key code of soft keys

9.6 Reading part temperature

In the appended c++ header files, the temperature is a property of the class part. This is actual
not public, but will become in further revisions. The access will be by
GetProp(Part.Temperature)

I++ DME Version 1.3.1.draft 73

10 Multiple arm support

Picture 22: Multiple arm equipment

• For each column a single I++ DME interface is required.
• The disposition of a feature to be measured on a specific column, the synchronization of

the columns (including collision detection between the columns) and the combination of
the results is part of the application task.

• The vendor of the multiple arm system has to provide an application to build the coupling
transformation. This can be a stand-alone application or an integrated part of the DME
interface.

• The following commands are used to set and get these transformations
SetCsyTransformation(MultipleArmCsy,.......), GetCsyTransformation(MultipleArmCsy)

A coupling tool is used to define the multiple arm coordinate system for each column. The
coupling tool may be a special tool or the application itself.
The coupling tool measures an artifact to calculate the MultipleArmCsy. The sequence of the
measurement is as follows.

- The coupling tool measures the artifact using column 1.
- The coupling tool measures the artifact using column 2.
- The coupling tool calculates the 2 transformations used for column 1 and 2.
- The coupling tool sends the transformation for column 1 using a

SetCsyTransformation(MultipleArmCsy,.......) command to DME of column 1.
- The coupling tool sends the transformation for column 2 using a

SetCsyTransformation(MultipleArmCsy,.......) command to DME of column 2.

I++ DME Version 1.3.1.draft 74

11 Scanning

11.1 Preliminaries

11.1.1 Hints:

• Hints are used to communicate properties of the part to the DME.
• The only use for Hints is to optimize the execution of a measuring process.
• Hints are not mandatory; the DME must be able to execute without the interpretation

of a given hint.

The definition of the scanning commands is independent of the type of sensor, F.E. tactile,
measuring. Tactile sensors may emulate the functionality of measuring sensors. The algorithm
is not part of the spec.

11.1.2 OnScanReport(..)

Defines properties reported while scanning.

 OnScanReport(..)

Parameters Enumeration of properties reported for a scan. In addition to the arguments allowed
at “Get(..)” command, also IJK() and EffectiveToolRad() are possible. Please notice
that this property is not a static value of the Tool. It depends on the actual
circumstances of the actual measurement (probing direction …).

Data
Errors Bad property

Remarks Besides properties like X(), Y(), Z() the scan can report a Q() property that defines a

“quality” for a scan point returned to the client by the DME.
 The Q() property is a numeric value between 0 and 100 indicating the “quality” of

the measured point. A value of 0 defines a “good” point. Depending on the tool used
to scan, values from 1 to 100 indicate a lower quality and reliability of the points. A
value of 100 marks bad points.

 If points are out of the tool’s measuring range, the DME may decide to flag them as
“bad points” or stop the scan with an error.

 To increase system performance, already measured data may be transmitted from the
 server to the client while the execution of the scanning command is still in progress.
 To increase performance, the names of the values and the () are not defined in the

answer strings of scanning.
 To prevent overhead (TCP/IP and other…) in returning each measuring value as an

own string, the scanning results can be blocked. Multiple measuring results can be
returned in one string. The number of values in a return string must be multiple of
the definition done by OnScanReport. See example in 11.4.

 If no OnScanReport() is set in the current session the server has to use the default
(see StartSession).

I++ DME Version 1.3.1.draft 75

11.2 Scanning known contour

11.2.1 ScanOnCircleHint(..)

The ScanOnCircleHint command defines expected deviations of the measured circle from the

nominal circle. The displacement and the form can be used by the DME to optimize
the execution of the ScanOnCircle command.

 ScanOnCircleHint (Displacement, Form)

Parameters Displacement defines the maximum expected distance between the nominal circle

center and the actual circle center.
 Form defines the maximum expected form deviation calculated by Gauss of the

circle. The form is defined by the radial distance of the innermost and outermost
point related to the calculated circle.

11.2.2 ScanOnCircle(..)

 ScanOnCircle(Cx, Cy, Cz, Sx, Sy, Sz, i, j, k, delta, sfa, StepW)

Parameters Cx, Cy, Cz is the nominal center point of the circle
 Sx, Sy, Sz is a point on the circle radius where the scan starts
 i,j,k is the normal vector of the circle plane
 delta is the angle to scan
 sfa is the surface angle of the circle.
 StepW average angular distance between 2 measured points in degrees.

Data
Errors
Remark

I++ DME Ve
[Cx, Cy, Cz]

[Sx, Sy, Sz]

[i, j, k]

[delta]

[StepW]

[sfa]

As defined by OnScanReport

The distance between the center point (Cx,Cy,Cz) and the start point (Sx,Sy,Sz) may
not be zero. The distance is the nominal radius of the circle to scan.

The plane vector (i,j,k) must be orthogonal to the vector from the center point to the
start point (start direction).

rsion 1.3.1.draft 76

 The angle delta may be positive or negative and defines the arc to scan. A positive
delta means counter clockwise, a negative clockwise (see picture).

 Assume (i,j,k) to be the z-direction of a coordinate system and the start direction the

x-direction. The reference for delta is the x-direction and the angle delta is defined
in the xy plane.

 The surface angle is the angle between the x-direction and the material direction in

the xz plane. The surface angle is 0 for an outside circle and 180 for an inside circle.
 Using a surface angle enables to execute a circular path scan on cylinders (sfa=0 or

sfa=180), on planes (sfa=90 or sfa=270) and cones. In the context of this command
cylinders and planes are specialized cones.

 The scan is executed as follows:

 The DME will implicitly execute a PtMeas command using (Sx,Sy,Sz) as point and vector

derived from the surface normal in the start point.

 The actual scan radius is calculated from the circle center point (Cx, Cy, Cz) and the result point

of the PtMeas command. The DME will scan on a circle defined by (Cx,Cy,Cz) and
the actual scan radius.

 The DME will scan the arc defined by delta.

 During the scan the probe will move in the cone shell defined by the PtMeas result point and the

probing direction rotated around an axis defined by (Cx,Cy,Cz,i,j,k).

 The DME will return approximately delta/StepW points to the client using the format defined by

OnScanReport.

11.2.3 ScanOnLineHint(..)

The ScanOnLineHint command defines expected deviations of the measured line from the nominal

line. The angle and the form can be used by the DME to optimize the execution of
the ScanOnLine command.

 ScanOnLineHint (Angle, Form)

Parameters Angle defines the maximum expected angle between the nominal line and the actual

line.
 Form defines the maximum expected deviation form of the Gauss calculated line.

11.2.4 ScanOnLine(..)

 ScanOnLine(Sx,Sy,Sz,Ex,Ey,Ez,i,j,k,StepW)

Parameters Sx, Sy, Sz defines the line start point
 Ex, Ey, Ez defines the line end point

I++ DME Version 1.3.1.draft 77

 i,j,k is the surface normal vector on the line
 StepW average distance between 2 measured points in mm.

[Sx, Sy, Sz]

[Ex, Ey, Ez]
[i, j, k]

[StepW]

Data As defined by OnScanReport
Errors
Remark The distance between the start point (Sx,Sy,Sz) and the end point (Ex,Ey,Ez) may

not be zero. This is the distance to scan.

 The surface vector (i,j,k) must be orthogonal to the vector from the start point to the

end point.

 The scan is executed as follows:

 The DME will implicitly execute a PtMeas command using (Sx,Sy,Sz) as point and (i,j,k) as

surface normal.

 The actual start point for the scan is the result point of the PtMeas command.

 The DME will scan along the contour between start and end point. The scan terminates if the

distance between a measured point and the actual start point is greater than the
distance between (Sx,Sy,Sz) and (Ex,Ey,Ez),

 During the scan the probe will move in a plane defined by (Sx,Sy,Sz) and the vector of the cross

product between (i,j,k) and the direction from start to end point.

 The DME will return approximately (distance start/end)/StepW points to the client using the

format defined by OnScanReport.

I++ DME Version 1.3.1.draft 78

11.3 Scan unknown contour

11.3.1 ScanUnknownHint(..)

The ScanUnknownHint command defines expected minimum radius of curvature in the unknown

contour.

 ScanUnknownHint (MinRadiusOfCurvature)

Parameters Prognostic minimum radius in the curve to measure. Only values greater zero are

allowed.

11.3.2 ScanInPlaneEndIsSphere(..)

The ScanInPlaneEndIsSphere allows to scan an unknown contour. The scan will stop if the sphere

stop criterion is matched.

 ScanInPlaneEndIsSphere(Sx,Sy,Sz,Si,Sj,Sk,Dx,Dy,Dz,StepW,
Ex,Ey,Ez,Dia,Ei,Ej,Ek)

Parameters Sx, Sy, Sz defines the scan start point
 Si, Sj, Sk defines the surface direction in the start point
 Dx, Dy, Dz defines the scan direction point
 StepW is the average distance between 2 measured points
 Ex, Ey, Ez, defines the expected scan end point
 Dia define a sphere around the end point where the scan stops
 Ei, Ej, Ek defines the surface direction at the end point. It defines the direction
 for retracting

I++ DME Version 1.3.1.draft 79

[Ex, Ey, Ez, Dia]

Data
Errors
Remark

 The DM

 The DM
 During t

 The DM

 If the sta

11.3.3 Sc

The ScanI

Parameter

I++ DME
[Sx, Sy, Sz]

[Si, Sj, Sk]

[StepW]

[Dx, Dy, Dz]

[Ei, Ej, Ek]

As defined by OnScanReport

The distance between the start point (Sx,Sy,Sz) and the direction point (Dx,Dy,Dz)
may not be zero.
The end point must be in the scanning plane defined by the start point and the
normal vector defined by the cross product of (Si,Sj,Sk) and the direction vector
from start to direction point.

 The scan is executed as follows:

E will implicitly execute a PtMeas command using (Sx,Sy,Sz) as point and (Si,Sj,Sk) as
surface normal.

E will start to scan into the direction from start to direction point.
he scan the tool center will move within the scanning plane

E will stop scanning when within the stop sphere the distance between a scanned point
and the sphere center has a local minimum.

rt point is within the stop sphere, the DME will first leave the sphere and then start to
check the stop criterion.

anInPlaneEndIsPlane(..)

nPlaneEndIsPlane allows to scan an unknown contour. The scan will stop if the plane
stop criterion is matched.

 ScanInPlaneEndIsPlane(Sx,Sy,Sz,Si,Sj,Sk,Dx,Dy,Dz,StepW,

 Px,Py,Pz,Pi,Pj,Pk,n,Ei,Ej,Ek)

s Sx, Sy, Sz defines the scan start point
Si, Sj, Sk defines the surface direction in the start point

 Version 1.3.1.draft 80

 Dx, Dy, Dz defines the scan direction point
 StepW is the average distance between 2 measured points
 Px, Py, Pz,
 Pi, Pj, Pk Define a plane where the scan stops
 n Number of through the plane
 Ei, Ej, Ek surface vector at the end point. It defines the direction
 for retracting

[Sx, Sy, Sz]

[Px, Py, Pz]

[StepW]

[Dx, Dy, Dz]

[Pi, Pj, Pk][Ei, Ej, Ek]

[Si, Sj, Sk]

Data As defined by OnScanReport
Errors
Remark The distance between the start point (Sx,Sy,Sz) and the direction point (Dx,Dy,Dz)

may not be zero.
 The stop plane must be perpendicular to the scanning plane defined by the start

point and the normal vector defined by the cross product of (Si,Sj,Sk) and the
direction vector from start to direction point.

 The scan is executed as follows:

 The DME will implicitly execute a PtMeas command using (Sx, Sy, Sz) as point and (Si, Sj, Sk)

as surface normal.

 The DME will start to scan into the direction from start to direction point.
 During the scan the tool center will move within the scanning plane.

 The DME will stop scanning when it passes n times through the stop plane.
 The DME will start to check the stop criteria when it has moved a distance that is larger than the

distance between start and direction point.

I++ DME Version 1.3.1.draft 81

11.3.4 ScanInPlaneEndIsCyl(..)

The ScanInPlaneEndIsCyl allows to scan an unknown contour. The scan will stop if the cylinder

stop criterion is matched.

 ScanInPlaneEndIsCyl(Sx,Sy,Sz,Si,Sj,Sk,Dx,Dy,Dz,StepW,

 Cx,Cy,Cz,Ci,Cj,Ck,d,n,Ei,Ej,Ek)

Parameters Sx, Sy, Sz defines the scan start point
 Si, Sj, Sk defines the surface direction in the start point
 Dx, Dy, Dz defines the scan direction point
 StepW is the average distance between 2 measured points
 Cx,Cy,Cz
 Ci,Cj,Ck, d define a cylinder where the scan stops
 n Number of through the cylinder
 Ei, Ej, Ek defines the surface vector at the end point. It defines the direction
 for retracting

[Sx, Sy, Sz]

[Cx, Cy, Cz, Ci, Cj, Ck, d]

[Ei, Ej, Ek]
[StepW]

[Dx, Dy, Dz]

[Si, Sj, Sk]

Data As defined by OnScanReport
Errors
Remark The distance between the start point (Sx,Sy,Sz) and the direction point (Dx,Dy,Dz)

may not be zero.
 The (Ci,Cj,Ck) must be parallel to the scanning plane defined by the start point and

the normal vector defined by the cross product of (Si,Sj,Sk) and the direction vector
from start to direction point..

I++ DME Version 1.3.1.draft 82

 The scan is executed as follows:

 The DME will implicitly execute a PtMeas command using (Sx,Sy,Sz) as point and (Si,Sj,Sk) as

surface normal.

 The DME will start to scan into the direction from start to direction point.
 During the scan the tool center will move within the scanning plane

 The DME will stop scanning when it passes n times through the stop cylinder.
 If the start point is within the stop cylinder, the DME will first leave the cylinder and then
 start checking the stop criterion.

11.3.5 ScanInCylEndIsSphere(..)

The ScanInCylEndIsSphere allows to scan an unknown contour. The scan will stop if the sphere

stop criterion is matched.

 ScanInCylEndIsSphere(Cx,Cy,Cz,Ci,Cj,Ck,
 Sx,Sy,Sz,Si,Sj,Sk,
 Dx,Dy,Dz,StepW,
 Ex,Ey,Ez,Dia,Ei,Ej,Ek)

Parameters Cx, Cy, Cz
 Ci,Cj,Ck defines the axis of the cylinder
 Sx, Sy, Sz defines the scan start point
 Si, Sj, Sk defines the surface direction in the start point
 Dx, Dy, Dz defines the expected scan direction point
 StepW is the average distance between 2 measured points
 Ex, Ey, Ez, Dia
 Define a sphere where the scan stops
 Ei, Ej, Ek defines the surface at the end point. It defines the direction
 for retracting

I++ DME Version 1.3.1.draft 83

[Cx, Cy, Cz]

[Ci, Cj, Ck]

[Sx, Sy, Sz]

[Dx, Dy, Dz]
[StepW]

[Ex, Ey, Ez, Dia]

[Ei, Ej, Ek]

[Si, Sj, Sk]

Data As defined by OnScanReport
Errors
Remark The distance between the start point projected to the cylinder axis and the start point

(Sx,Sy,Sz) may not be zero and defines the diameter of the cylinder.

 During the scan the tool center will move within the surface (ScanningCylinder),

that is created by rotating a line (Sx,Sy,Sz, Ci,Cj,Ck) around the cylinder axis.

The distance between the start point (Sx,Sy,Sz) and the direction point (Dx,Dy,Dz) may not be

zero.

 The scan is executed as follows:

 The DME will implicitly execute a PtMeas command using (Sx,Sy,Sz) as point and (Si,Sj,Sk) as

surface normal.

 The DME will start to scan into the direction from start to direction point.
 During the scan the tool center will move ScanningCylinder.

 The DME will stop scanning when within the stop sphere the distance between a scanned point

and the sphere center has a local minimum.
 If the start point is within the stop sphere, the DME will first leave the sphere and then start

checking the stop criterion.

11.3.6 ScanInCylEndIsPlane(..)

I++ DME Version 1.3.1.draft 84

The ScanInCylEndIsPlane allows to scan an unknown contour. The scan will stop if the plane stop
criterion is matched.

 ScanInCylEndIsPlane(Cx,Cy,Cz,Ci,Cj,Ck,
 Sx,Sy,Sz,Si,Sj,Sk,
 Dx,Dy,Dz,StepW,
 Px,Py,Pz,Pi,Pj,Pk,n
 Ei,Ej,Ek)

Parameters Cx, Cy, Cz
 Ci,Cj,Ck defines the axis of the cylinder
 Sx, Sy, Sz defines the scan start point
 Si, Sj, Sk defines the surface direction in the start point
 Dx, Dy, Dz defines the scan direction point
 StepW is the average distance between 2 measured points
 Px, Py, Pz,
 Pi, Pj, Pk defines the stop plane
 n number of through stop plane
 Ei, Ej, Ek surface direction at end point. It defines the direction
 for retracting

Data As defined by OnScanReport
Errors

Remark The distance between the start point projected to the cylinder axis and the start point

(Sx,Sy,Sz) may not be zero and defines the diameter of the cylinder.

 During the scan the tool center will move within the surface (ScanningCylinder),

that is created by rotating a line (Sx,Sy,Sz, Ci,Cj,Ck) around the cylinder axis.

The distance between the start point (Sx,Sy,Sz) and the direction point (Dx,Dy,Dz) may not be

zero.

 The scan is executed as follows:

 The DME will implicitly execute a PtMeas command using (Sx,Sy,Sz) as point and (Si,Sj,Sk) as

surface normal.

 The DME will start to scan into the direction from start to direction point.
 During the scan the tool center will move ScanningCylinder.

 The DME will stop scanning when it passes n times through the stop plane.
 The DME will start to check the stop criteria when it has moved a distance that is larger than the

distance between start and direction point.

I++ DME Version 1.3.1.draft 85

[Cx, Cy, Cz]

[Ci, Cj, Ck]

[Dx, Dy, Dz]
[StepW]

[Pi, Pj, Pk]

[Px, Py, Pz]

[Sx, Sy, Sz]

[Ei, Ej, Ek]

[Si, Sj, Sk]

I++ DME Version 1.3.1.draft 86

11.4 Scanning Examples

11.4.1 Scanning known contour circle

Client to Server Server to Client Comment
00014
OnScanReport(X(),Y(),Z(),Q())

 Client defines format for
scanning result. Valid for
every scanning command
from now on.

 00014 &
 00014 %
00015 ScanOnCircleHint (0.01,
0.001)

 Gives as a hint prognostic
Displacement and Form

 00015 &
 00015 %
00016 ScanOnCircle (100, 0, -3,
120, 0, -3, 0, 0, 1, 360, 180, 0.5)

 Arguments are:
ScanOnCircle(Cx, Cy, Cz, Sx,
Sy, Sz, i, j, k, delta, sfa,
StepW)

 00016 &
 00016 # 118.5, 0.0001, -

3.0002, 0
Scanning result from server,
one point, assuming probe
sphere radius is 1.5mm

 00016 #
118.4992,0.1614,3.0002,
0,118.4971,0.3228,3.0002
,100,
…..

Multiple scanning results
points blocked in one result
string

 …. Follow multiple times until all
scanning results are
transmitted

 00016 % Scanning ready

11.4.2 Scanning unknown contour

Client to Server Server to Client Comment

 Previous defined

OnScanReport is used

00015 ScanUnknownHint
(100.0)

 Gives as a hint prognostic
minimum radius of curve

 00015 &
 00015 %

I++ DME Version 1.3.1.draft 87

00016 ScanInPlaneEndIsSphere
(100,0,0,0,0,1,100,1,0,0.2,100,1
00,1.5,1.0,0,0,1)

 Arguments are:
ScanInPlaneEndIsSphere(Sx,S
y,Sz,Si,Sj,Sk,Dx,Dy,Dz,Step
W,Ex,Ey,Ez,Dia,Ei,Ej,Ek)

 00016 &
 00016 # 100.0000,

0.0000,1.5000,0,100.0001
,0.2000,1.5000,0,100.000
0,0.4000,1.5000,0

Scanning result from server,
three points

 Multiple scanning results
 00016 #

100.0000,99.8000,1.5000,
0,100.0000,100.0000,1.50
00,0

Follow multiple times until
end criterion is satisfied and
all scanning results are
transmitted

 00016 % Scanning ready

I++ DME Version 1.3.1.draft 88

12 Rotary Table

12.1 AlignPart(..)
The client uses this method to force the part to be orientated according to the given vector(s).

 AlignPart(px1, py1, pz1, mx1, my1, mz1, alpha)

 AlignPart(px1, py1, pz1, mx1, my1, mz1,

 px2, py2, pz2, mx2, my2, mz2, alpha, beta)

Parameters First command for single rotary tables.
 Two normalized vectors (px, py, pz, mx, my, mz). The first vector is in part

coordinates. The second vector is in machine coordinates.

 Maximal allowed error angle (alpha) in which the found orientation may differ from

the desired one projected to the rotation plane. In case the angle exceeds, “Part not
aligned” is returned. In case alpha is zero no error check is performed.

 Second command if applicable when two pieces of rotational equipment rectangular

to each other are available.

Data Returns vectors (same number as set) which describe the reached alignment.
Errors 2506: Part not aligned.
Remark In case of a rotary table both vectors are projected in the plane of rotation. After

projection both vectors must be normalizable.
 The returned vectors are the projected and normalized vectors actually used by the

server.

I++ DME Version 1.3.1.draft 89

Appendix A C++ and Header Files for Explanation
A.1 \main\main.cpp

//--

#include "../cartcmm/cartcmm.h"
//#include "../dme/dme.h"
//#include "../cartcmmwithrottbl/CartCmmWithRotTbl.h"

//--

//Server _Server;
//Server* Srv() {return &_Server;}

void main () {

//r8 speed = Srv()->GoToPar()->Speed();
//ie r = Srv()->GoToPar()->Speed(5.0);

//--
};

A.2 \server
A.2.1 \server\server.h

#if !defined(AFX_Server_H__E4F9759D_0A8F_11D3_A3F2_0000F87ABD00__INCLUDED_)
define AFX_Server_H__E4F9759D_0A8F_11D3_A3F2_0000F87ABD00__INCLUDED_

#include "Part.h"
#include <ETag.h>

//--

class Server {

Part _Part;

//--

public: Server ();
virtual ~Server ();

//--

void StartSession (cTag tag); // connect to client
void EndSession (cTag tag); // disconnect from client
ie StopDaemon (cTag tag, cETag &fqt); // stop daemon
ie StopAllDaemons (cTag tag); // stop all daemons
void AbortE (cTag tag); // abort pending transactions
void GetErrorInfo (cTag tag); // abort pending transactions
void ClearAllErrors (cTag tag);

//--

virtual void GetProp (cTag tag, ...);
virtual void GetPropE (cTag tag, ...);
virtual void SetProp (cTag tag, ...);
virtual void EnumProp (cTag tag, ...);
virtual void EnumAllProp (cTag tag, ...);

//--
private:
 // these methods are for

 // documentation purpose only

void MainLoop ();
void DispatchToEventQue (Tag *tag, String &command);
void Dispatch (Tag *tag, String &command);
void SendAck (Tag *tag);

I++ DME Version 1.3.1.draft 90

void SendData (Tag *tag, cString &response);
void SendError (Tag *tag, cErrorSeverity sev, cErrorCode code);
void SendReady (Tag *tag);
void FormatTag (String &response, Tag* tag);
i4 DecodeTag (cString &command);
void Transmit (cString &response);

//--

bool ServerIsAlive();
ErrorSeverity GetErrorSeverity();
ErrorCode GetErrorCode();
bool ErrorDuringCommandExecution();

//--
};
#endif

A.2.2 \server\part.h

#if !defined(AFX_Part_H__E4F9759D_0A8F_11D3_A3F2_0000F87ABD00__INCLUDED_)
define AFX_Part_H__E4F9759D_0A8F_11D3_A3F2_0000F87ABD00__INCLUDED_

#include <IppTop.h>

//--

class Part {

//--

r8 _Approach;
r8 _Search;
r8 _XpanCoefficient;
r8 _Temperature;

//--

public: Part ();
virtual ~Part ();

//--

r8 Approach() {return _Approach;}
r8 Search() {return _Search;}

//--
};
#endif

A.2.3 \server\server.cpp

//--

#include "String.h"
#include "Server.h"

//--

void Server::MainLoop() { // for documentation only ***

 // this method is implemented for

 // documentation purpose only
String command;
Tag* tag = Nil;
 do {
 // wait for a command line from client
 // .. Wait(command)

i4 tagval = DecodeTag(command); // get tag values define by chars from 2 to 5

 if (command.FirstCharIs('E')) {
 tag = new ETag(tagval);

I++ DME Version 1.3.1.draft 91

 SendAck(tag); // confirm receive
 DispatchToEventQue(tag, command);} // do whatever is necessary
 else {
 tag = new Tag(tagval);
 SendAck(tag); // confirm receive
 Dispatch(tag, command);} // do whatever is necessary

 if (ErrorDuringCommandExecution()) { // something went wong ?
 SendError(tag, GetErrorSeverity(), GetErrorCode());}// send error
message

 SendReady(tag);}
 while (ServerIsAlive());} // while server is alive

//--

void Server::Transmit(cString &response) { // for documentation only ***

 // send this string to client

 /*... Send(response) */}

//--

void Server::FormatTag(String &response, Tag* tag){ // for documentation only ***

 response.SetLen0(); // remove all chars
 response.Format(tag->Val(), 5); // format 5 digits with
leading zeros
 if (dynamic_cast<ETag*>(tag) !=Nil) { response[1] = 'E';}
 // use E to indicate event
 response += " ";} // append a space char

//--

void Server::SendAck(Tag* tag) { // for documentation only ***

String response;
 FormatTag(response, tag);
 response += "&"; // add %
 Transmit(response);}

//--

void Server::SendData(Tag *tag, cString &data) { // for documentation only ***

String response;
 FormatTag(response, tag);
 response += "# "; // add # and space
 response += data; // add data
 Transmit(response);}

//--

void Server::SendError(Tag *tag, cErrorSeverity sev, cErrorCode code) { // for
documentation only ***

String response;
 FormatTag(response, tag);
 response += "! "; // add ! and space
// response += ... // add error
 Transmit(response);}

//--

void Server::SendReady(Tag *tag) { // for documentation only ***

String response;
 FormatTag(response, tag);
 response += "%"; // add %
 Transmit(response);}

//--

I++ DME Version 1.3.1.draft 92

A.3 \dme
A.3.1 \dem\dme.h

#if !defined(AFX_DME_H__E4F9759D_0A8F_11D3_A3F2_0000F87ABD00__INCLUDED_)
define AFX_DME_H__E4F9759D_0A8F_11D3_A3F2_0000F87ABD00__INCLUDED_

#include "../server/Server.h"
#include "../toolchanger/ToolChanger.h"

//--

class DME : public Server {

ToolChanger _ToolChanger;

//--

bool _IsHomed;
bool _IsUserEnabled;

//--

public: DME ();
virtual ~DME ();

//--

ToolChanger* TCh() {return &_ToolChanger;}

//--

virtual ie Home (cTag tag) {}
i4 IsHomed (cTag tag) {return _IsHomed;}

//--

virtual void EnableUser (cTag tag) {}
virtual void DisableUser (cTag tag) {}
bool IsUserEnabled (cTag tag) {}

//--

ie OnPtMeasReport (cTag tag, ...);
ie OnMoveReportE (cETag tag, cr8 dis, cr8 time,...);

//--

void GetMachineClass (cTag tag) {}
void GetErrStatusE (cTag tag) {}
void GetXtdErrStatus (cTag tag) {}

//--

void Get (cTag tag, ...);
ie GoTo (cTag tag,...);
ie PtMeas (cTag tag,...);
ie PtMeasIJK (cTag tag,...);
KTool* Tool () const {return _ToolChanger._ActTool;}
ie FindTool (cTag tag, cString &name) {return TCh()->FindTool (tag,
name);}
KTool* FoundTool () const {return _ToolChanger._FoundTool;}
ie ChangeTool (cTag tag, cString &name) {return TCh()->ChangeTool (tag,
name);}
ie SetTool (cTag tag, cString &name) {return TCh()->SetTool (tag,
name);}
ie AlignTool (cTag tag, cV3 &ijk, cr8 alpha) {return Tool()->AlignTool
(tag, ijk, alpha);}
ie AlignTool (cTag tag, cV3 &ijk, cV3 &uvw, cr8 alpha, cr8 beta)
 {return Tool()->AlignTool (tag, ijk, uvw, alpha, beta);}
GoToPars* GoToPar () const {return Tool()->GoToPar();}
PtMeasPars* PtMeasPar () const {return Tool()->PtMeasPar();}
GoToPars* ABCGoToPar () const {return Tool()->ABCGoToPar();}
PtMeasPars* ABCPtMeasPar () const {return Tool()->ABCPtMeasPar();}

I++ DME Version 1.3.1.draft 93

//--

virtual r8 X (); // return machine position in the
virtual r8 Y (); // selected coordinate system
virtual r8 Z ();
virtual V3 IJK ();

virtual ie X (cr8 x); // move machine to target position
virtual ie Y (cr8 y);
virtual ie Z (cr8 z);
virtual ie IJK (const V3 &ijk);

//--

ie OnScanReport (cTag tag, ...);
ie ScanOnCircleHint (cTag tag, ...);
ie ScanOnCircle (cTag tag, ...);
ie ScanOnLineHint (cTag tag, ...);
ie ScanOnLine (cTag tag, ...);

ie ScanUnKnownHint (cTag tag, ...);
ie ScanInPlaneEndIsSphere (cTag tag, ...);
ie ScanInPlaneEndIsPlane (cTag tag, ...);
ie ScanInPlaneEndIsCyl (cTag tag, ...);
ie ScanInCylEndIsSphere (cTag tag, ...);
ie ScanInCylEndIsPlane (cTag tag, ...);

};//--
#endif

A.4 \cartcmm
A.4.1 \cartcmm\cartcmm.h

#if !defined(AFX_CartCMM_H__E4F9759D_0A8F_11D3_A3F2_0000F87ABD00__INCLUDED_)
define AFX_CartCMM_H__E4F9759D_0A8F_11D3_A3F2_0000F87ABD00__INCLUDED_

#include "../DME/dme.h"
#include "T33.h"

//--

class CartCMM :public DME {

Axis _XAxis;
Axis _YAxis;
Axis _ZAxis;

//--

CoordSys _CoordSys;
T33 _PartCoordTrandformation;

//--

public: CartCMM ();
virtual ~CartCMM ();

//--

Axis* XAx() {return &_XAxis;}
Axis* YAx() {return &_YAxis;}
Axis* ZAx() {return &_ZAxis;}

//--

virtual
ie SetCoordSystem(CoordSys csy);
CoordSys GetCoordSystem() {return _CoordSys;}

//--

ie SetCsyTransformation(const T33EA &tra);
T33EA GetCsyTransformation();

I++ DME Version 1.3.1.draft 94

//--

protected:

virtual r8 X(); // return machine position in the
virtual r8 Y(); // selected coordinate system
virtual r8 Z();
virtual V3 IJK();

virtual ie X(cr8 x); // move machine to target position
virtual ie Y(cr8 y);
virtual ie Z(cr8 z);
virtual ie IJK(const V3 &ijk);

//--
};
#endif

A.4.2 \cartcmm\eulerw.cpp

// EulerA.cpp: implementation of the EulerA class.

#include "R33.h"
#include "EulerW.h"

//--

cr8 R_Delta = 1e-12;

r8 abs (cr8 x);
r8 sind (cr8 x);
r8 cosd (cr8 x);
r8 Acosd (cr8 x);
r8 Atan2d(cr8 y, cr8 x);

//--

EulerA::EulerA(cR33 &b){ // create Euler from
 _Psi = 0,
 // rotation matrix
 _Phi = 0;
r8 s3 = 0,
 c3 = 0,
 c1 = b.Val(3,3);
 _Theta = Acosd(c1);
r8 s1 = sind(_Theta);
 if (abs(s1) > R_Delta) { // check if Tht() is 0
r8 s2 = b.Val(1,3)/s1, // no calculate Psi()
 c2 = -b.Val(2,3)/s1;
 _Psi = Atan2d(s2, c2);
EulerA ew(_Theta, _Psi, _Phi); // use Tht(), Psi(), 0 to create matrix
R33 r(ew); -r; // and calculate Psi() from orig mat
R33 rr(b); rr*=r; // and matrix build from Tht() Psi()
 c3 = r.Val(1,1);
 s3 = r.Val(2,1);}
 else { // Tht()=0, Psi()=0
 c3 = b.Val(1,1); // calculate phi
 s3 = b.Val(2,1);}
 _Phi = Atan2d(s3, c3);}

//--

void R33::Create(cEulerA &b) {

r8 c1 = cosd(b.Tht()), // theta==0 && psi==0
 s1 = sind(b.Tht()),
 c2 = cosd(b.Psi()), // c3 s3 0
 s2 = sind(b.Psi()), // -s3 c3 0
 c3 = cosd(b.Phi()), // 0 0 1
 s3 = sind(b.Phi());

 Mat(1,1) = c2*c3-c1*s2*s3;
 Mat(1,2) = s2*c3+c1*c2*s3;
 Mat(1,3) = s1*s3;

I++ DME Version 1.3.1.draft 95

 Mat(2,1) = -c2*s3-c1*s2*c3;
 Mat(2,2) = -s2*s3+c1*c2*c3;
 Mat(2,3) = s1*c3;

// c2*c3-c1*s2*s3 s2*c3+c1*c2*s3 s1*s3

 Mat(3,1) = s1*s2;

//-c2*s3-c1*s2*c3 -s2*s3+c1*c2*c3 s1*c3
 Mat(3,2) = -s1*c2;
 Mat(3,3) = c1;}

// s1*s2 -s1*c2 c1

//--

A.5 \cartcmmwithrottbl
A.5.1 \cartcmmwithrottbl\cartcmmwithrottbl.h

#if !defined(AFX_CartCmmWithRotTbl_H__E4F9759D_0A8F_11D3_A3F2_0000F87ABD00__INCLUDED_)
define AFX_CartCmmWithRotTbl_H__E4F9759D_0A8F_11D3_A3F2_0000F87ABD00__INCLUDED_

#include "../cartcmm/cartcmm.h"

//--

class CartCmmWithRotTbl: public CartCMM {

//--

Axis _RAxis;

//--

public: CartCmmWithRotTbl ();
virtual ~CartCmmWithRotTbl ();

//--

Axis* RAx () {return &_RAxis;}

//--

ie AlignPart (cTag tag, ...);

//--

virtual char* Type () {return "CartCMMWithRotTbl";}

};//--
#endif

A.6 \toolchanger
A.6.1 \toolchanger\toolchanger.h

// ToolChanger.h: interface for the ToolChanger class.

#if !defined(AFX_ToolChanger_H__2418E2DB_F44D_4F25_B290_3EDC4854E112__INCLUDED_)
define AFX_ToolChanger_H__2418E2DB_F44D_4F25_B290_3EDC4854E112__INCLUDED_

#include "ToolAB.h"

//--

class ToolChanger { friend class DME;

KTool* _ActTool;
KTool* _FoundTool;
KTool* _DefaultTool;
KTool* _UndefTool;

//--

Ary<KTool*> _Tools;
V3 _TransferPosition;

I++ DME Version 1.3.1.draft 96

//--

 ToolChanger (){

/*
String name = "DefaultTool"
 _DefaultTool = new Tool(name);

 name = "UndefTool"
 _UndefTool = new Tool(name);

 name = "NoTool"
Tool* tool = new Tool(name);
 _Tool.Add(tool);

 name = "ReferenceTool"
Tool* tool = new Tool(name);
 _Tool.Add(tool);

*/}

//--

virtual ~ToolChanger();

//--

KTool* ActTool() const {return _ActTool;}
KTool* FoundTool() {return _FoundTool;}

//--

GoToPars* GoToPar() const {GoToPars* r=ActTool()->GoToPar (); if (r==Nil)
r=_DefaultTool->GoToPar(); return r;}
GoToPars* ABCGoToPar()const {GoToPars* r=ActTool()->ABCGoToPar(); if (r==Nil)
r=_DefaultTool->ABCGoToPar(); return r;}

//--

PtMeasPars* PtMeasPar() const {PtMeasPars* r=ActTool()->PtMeasPar (); if
(r==Nil) r=_DefaultTool->PtMeasPar(); return r;}
PtMeasPars* ABCPtMeasPar()const {PtMeasPars* r=ActTool()->ABCPtMeasPar(); if
(r==Nil) r=_DefaultTool->ABCPtMeasPar(); return r;}

//--

i4 Howmany(cTag tag) {return _Tools.Len();}

//--

ie Qualify (cTag tag) {return _ActTool->Qualify(tag);}
ie ChangeTool (cTag tag, cString &name);
ie SetTool (cTag tag, cString &name);
ie FindTool (cTag tag, cString &name){_FoundTool = Find(tag, name);
return (_FoundTool==Nil) ? ErrorToolNotFound : ErrorSuccess;}
ie FindTool (cTag tag, cV3 &ijk) {_FoundTool = Find(tag, ijk);
return (_FoundTool==Nil) ? ErrorToolNotFound : ErrorSuccess;}
String ActToolName(cTag tag) {return _ActTool->Name();}

//--

void EnumTools(cTag tag) {
String name;
 for (i4 i=0; i < _Tools.Len();) {
 name = _Tools[i]->Name();
 /*send name to client*/}}

//--
private:
KTool* Find(cTag tag, cString &name) {/* for(i..) toolname = _Tools[i]-
>Name()*/};
KTool* Find(cTag tag, cV3 &ijk) {/* for(i..) toolname = _Tools[i]-
>Name()*/};

//--
};
#endif

I++ DME Version 1.3.1.draft 97

A.6.2 \toolchanger\tool.h

// Tool.h: interface for the Tool class.

#if !defined(AFX_Tool_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_)
define AFX_Tool_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_

#include "String.h"
#include "GoToParams.h"
#include "PtMeasPars.h"
#include "V3.h"
#include "Axis.h"

//--

class KTool { friend class ToolChanger;

String _Name;
i4 _Type;

//--

GoToPars* _GoToPar;
GoToPars* _ABCGoToPar;

//--

PtMeasPars* _PtMeasPar;
PtMeasPars* _ABCPtMeasPar;

//--

String _QualificationArtifact;
i4 _QualificationState;
DateTime _LastQualificationDate;
ui _MethodsSupported;

//--

public: KTool(cString &name);
virtual ~KTool();

//--

String Name() {return _Name;}

//--

GoToPars* GoToPar () const {return _GoToPar;}
GoToPars* ABCGoToPar() const {return _ABCGoToPar;}

//--

PtMeasPars* PtMeasPar() const {return _PtMeasPar;}
PtMeasPars* ABCPtMeasPar() const {return _ABCPtMeasPar;}

//--

bool CanDoGoTo ();
bool CanDoPtMeas();

//--

ie Qualify(cTag tag);

//--

virtual ie Align (cTag tag, cV3 &ijk)
 {return ErrorBadContext;}
virtual ie AlignTool (cTag tag, cV3 &ijk, cr8 alpha)
 {return ErrorBadContext;}
virtual ie AlignTool (cTag tag, cV3 &ijk, cV3 &uvw, cr8 alpha, cr8 beta)
 {return ErrorBadContext;}

//--

I++ DME Version 1.3.1.draft 98

virtual void EnumProp (cTag tag, ...);
virtual void GetProp (cTag tag, ...);
virtual void GetPropE (cTag tag, ...);
virtual void SetProp (cTag tag, ...);

//--

protected:
virtual r8 A() {return 0;}
virtual r8 B() {return 0;}
virtual r8 C() {return 0;}

virtual ie A(cr8 a) {return ErrorSuccess;}
virtual ie B(cr8 b) {return ErrorSuccess;}
virtual ie C(cr8 c) {return ErrorSuccess;}

//--
};
#endif

A.6.3 \toolchanger\toolab.h

// ToolAB.h: interface for the ToolAB class.

#if !defined(AFX_ToolAB_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_)
define AFX_ToolAB_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_

#include "Tool.h"

//--

class ToolAB : public KTool {

Axis _AAxis;
Axis _BAxis;

//--

public: ToolAB(cString &name);
virtual ~ToolAB();

//--

ie Align (cTag tag, cV3 &ijk);
void EnumProp(cTag tag);

//--

r8 A();
r8 B();

ie A(cr8 a);
ie B(cr8 b);

//--

//--
};
#endif

A.6.4 \toolchanger\toolabc.h

// ToolABC.h: interface for the ToolABC class.

#if !defined(AFX_ToolABC_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_)
define AFX_ToolABC_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_

#include "ToolAB.h"

//--

class ToolABC : public ToolAB {

I++ DME Version 1.3.1.draft 99

Axis _CAxis;

//--

public: ToolABC(const String &name);
virtual ~ToolABC();

//--

ie Align (cTag tag, cV3 &ijk);
void EnumProp(cTag tag);

//--

r8 C();
ie C(cr8 c);

//--
};
#endif

A.6.5 \toolchanger\gotoparams.h

// GoToPars.h: interface for the GoToPars class.

#if !defined(AFX_GoToPars_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_)
define AFX_GoToPars_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_

#include "../lib/String.h"
#include "Param.h"

//--

class GoToPars {

Param _Speed;
Param _Accel;

//--

public: GoToPars();
virtual ~GoToPars();

//--

r8 MinSpeed() const {return _Speed.Min();}
r8 Speed () const {return _Speed.Val();}
r8 MaxSpeed() const {return _Speed.Max();}
bool CanChangeSpeed() const {return _Speed.CanChange();}
ie Speed(cr8 s) {return _Speed.Val(s);}

//--

r8 MinAccel() const {return _Accel.Min();}
r8 Accel () const {return _Accel.Val();}
r8 MaxAccel() const {return _Accel.Max();}
bool CanChangeAccel() const {return _Accel.CanChange();}
ie Accel(cr8 s) {return _Accel.Val(s);}

//--

void EnumProp();

//--
};
#endif

A.6.6 \toolchanger\ptmeaspars.h

// PtMeasPars.h: interface for the PtMeasPars class.

#if !defined(AFX_PtMeasPars_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_)
define AFX_PtMeasPars_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_

#include "../lib/String.h"
#include "../lib/DateTime.h"

I++ DME Version 1.3.1.draft 100

#include "GoToParams.h"

//--

class PtMeasPars {

Param _Approach;
r8 _Search;
r8 _Retract;
GoToPars _Move;

//--

public: PtMeasPars();
virtual ~PtMeasPars();

//--

bool CanChangeSpeed () {return _Move.CanChangeSpeed();}
r8 MinSpeed () {return _Move.MinSpeed();}
r8 Speed () {return _Move.Speed();}
r8 MaxSpeed () {return _Move.MaxSpeed();}
ie Speed (cr8 s) {return _Move.Speed(s);}

//--

bool CanChangeAccel () {return _Move.CanChangeAccel();}
r8 MinAccel () {return _Move.MinAccel();}
r8 Accel () {return _Move.Accel();}
r8 MaxAccel () {return _Move.MaxAccel();}
ie Accel (cr8 s) {return _Move.Accel(s);}

//--

void EnumProp();

//--
};
#endif

A.6.7 \toolchanger\param.h

// Param.h: interface for the Param class.

#if !defined(AFX_Param_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_)
define AFX_Param_H__79AF9D2B_A7BC_4F04_923D_1452AF559CC1__INCLUDED_

#include "IppTypeDef.h"
#include <IppErrorCodes.h>

r8 min(cr8 a, cr8 b);
r8 max(cr8 a, cr8 b);

//--

class Param {

r8 _Min;
r8 _Val;
r8 _Max;
bool _CanChange;

//--

public: Param() {_Min=-10000;_Val=0; _Max=10000; _CanChange=Tr;}
virtual ~Param();

//--

r8 Min () const {return _Min;}
r8 Val () const {return _Val;}
r8 Max () const {return _Max;}
bool CanChange() const {return _CanChange || (_Max-_Min)<=0;}
void EnumProp ();

//--

I++ DME Version 1.3.1.draft 101

ie Val(cr8 v) {
ie errcod = ErrorSuccess;
bool r = CanChange();
 if (r) {
 r = v >= _Min && v <= _Max;
 if (r) {
 _Val=v;}
 else {
 _Val = min(v, _Max);
 _Val = max(_Val, _Min);
 errcod = (v < _Min) ? ErrorParamTooSmall : ErrorParamTooLarge;}}
 else {
 errcod = ErrorParamCannotBeChanged;}
 return errcod;}

//--
private:
void Min (cr8 v) { _Min=v;}
void Max (cr8 v) { _Max=v;}
void CanChange(cbo v) { _CanChange=v;}

//--
};
#endif

A.7 Most important of lib
A.7.1 \lib\axis.h

// Axis.h: interface for the Axis class.

#if !defined(AFX_Axis_H__B3DA30C7_5415_11D3_A481_0000F87ABD00__INCLUDED_)
define AFX_Axis_H__B3DA30C7_5415_11D3_A481_0000F87ABD00__INCLUDED_

#include "IppTypeDef.h"

//---

class Axis {

//---

 enum AxisType {Lin=1, Rot=2};

char _Name[8];
AxisType _Type;
r8 _MinPos;
r8 _ActPos;
r8 _MaxPos;
r8 _Pitch;
r8 _Temperature;
bool _IsControlled;
bool _IsHomed;

//---

public: Axis();
virtual ~Axis(){};

//---

i4 Type() const {return _Type;}
r8 MinPos() const {return _MinPos;}
r8 MaxPos() const {return _MaxPos;}
r8 Pitch() const {return _MaxPos;}
r8 Temperature() const {return _Temperature;}

//---

static
void EnumProp(); // Name, c*8
 // Type, i4
 // MinPos, r8
 // MaxPos, r8
 // Temperature, r8

I++ DME Version 1.3.1.draft 102

//--
};
#endif

A.7.2 \lib\eulerw.h

// EulerA.h: interface for the EulerA class.

#if !defined(AFX_EulerA_H__0E096DA3_5537_11D3_84A8_0000F87ADB6B__INCLUDED_)
define AFX_EulerA_H__0E096DA3_5537_11D3_84A8_0000F87ADB6B__INCLUDED_

#include "IppTop.h"

//--

class EulerA {

r8 _Theta; // Euler angel in degrees
r8 _Psi;
r8 _Phi;

//--

public: EulerA();
 EulerA(cr8 theta, cr8 psi, cr8 phi);
 EulerA(cR33 &b);
virtual ~EulerA();
//--

r8 Tht() const {return _Theta;}
r8 Psi() const {return _Psi;}
r8 Phi() const {return _Phi;}

//--
};
//--
#endif

A.7.3 \lib\tag.h

// KTag.h: interface for the KTag class.

#if !defined(AFX_KTag_H__001F2611_6298_11D3_A49B_0000F87ABD00__INCLUDED_)
define AFX_KTag_H__001F2611_6298_11D3_A49B_0000F87ABD00__INCLUDED_

#include <IppTypeDef.h>

//--

class Tag {

static
i4 _TagCounter; // static tag counter
i4 _Tag; // tag

//--

public: Tag(ci4 i) {_Tag = i;}
virtual ~Tag() {}

//--

i4 Val() {return _Tag;}
i4 NewTag(); // create new tag *** for client use only

//--
};
#endif

A.7.4 \lib\ipptypedef.h

// This is the global type definition file

#ifndef _IppTypeDefDefined

I++ DME Version 1.3.1.draft 103

#define _IppTypeDefDefined

//--

typedef unsigned char uc; // define some shortcuts
typedef const unsigned char cuc; // for type definitions

typedef char ch;
typedef const char cc;

typedef unsigned short ui2;
typedef signed short i2;
typedef const signed short ci2;
typedef const unsigned short cui2;

typedef signed int i4;
typedef const signed int ci4;

typedef signed int ie; // error codes
typedef const signed int cie;

typedef const unsigned int cui;
typedef unsigned int ui;

typedef unsigned int ich;
typedef const unsigned int cich;

typedef double r8;
typedef const double cr8;
typedef float r4;
typedef const float cr4;

typedef bool bo;
typedef const bool cbo;

//--

#define Fa false // define boolean shortcuts
#define Tr true
#define Nil 0

//--

#endif

A.7.5 \lib\ippbaseclasses.h

// predefined classes

#ifndef _IppBaseClassesDefined
#define _IppBaseClassesDefined

//--

class String; typedef const String cString; // data base object
class Tag; typedef const Tag cTag; // data base object
class ETag; typedef const ETag cETag; // data base object
class GoToPars; typedef const GoToPars cGoToPars; // data base object
class PtMeasPars; typedef const PtMeasPars cPtMeasPars;

//--

class V3; typedef const V3 cV3; // data base object
class M33; typedef const M33 cM33; // data base object
class R33; typedef const R33 cR33; // data base object
class T33; typedef const T33 cT33; // data base object
class T33EA; typedef const T33EA cT33EA; // data base object
class EulerA; typedef const EulerA cEulerA; // data base object

//--

class Axis; typedef const Axis cAxis;
class Part; typedef const Part cPart;

//--

enum ErrorSeverity; typedef const ErrorSeverity cErrorSeverity;

I++ DME Version 1.3.1.draft 104

I++ DME Version 1.3.1.draft 105

enum ErrorCode; typedef const ErrorCode cErrorCode;

//--
#endif

	I++ Working Group Information
	This specification was created with the assistance of
	The goal
	Sub Working group I++ DME Interface (Dimensional Measuring Equipment)
	Requirement
	What is the intention of the specification ?
	Schedule steps
	History
	Links to important sites

	Physical System Layout
	DME-Interface Implementations
	DME-Interface Model
	Logical System Layout
	DME-Interface and Subsystems
	Application
	Monitor
	Diagnostics
	Info

	Hierarchy of Communication
	Layers
	Examples of basic use cases
	Sequence Diagram: StartSession, EndSession
	Sequence Diagram: Standard Queue Communication
	Sequence Diagram: Event, Fast Queue Communication (Multiple Shot Events)
	Sequence Diagram: Handling of Unsolicited Errors

	Events
	Transaction events, syntax
	One shot events
	Multiple shot events
	Server events

	Object Model
	Explanation
	Reduced Object Model
	Full Object Model
	Packaging for visualization
	Contents of server
	Contents of dme
	Contents of cartcmm
	Contents of cartcmmwithrotarytable
	Contents of toolchanger
	Contents of lib and unspecified

	Protocol
	Communication
	Character set
	Units
	Enumeration
	Definitions used in formats
	Production Language
	Syntax

	Protocol Basics
	Tags
	General line layout
	CommandLine
	ResponseLine
	Definitions

	Transactions
	Example

	Events
	Examples

	Errors

	Method Syntax
	Server Methods
	StartSession()
	EndSession()
	StopDaemon(..)
	StopAllDaemons()
	AbortE()
	GetErrorInfo(..)
	ClearAllErrors()
	Information for handling properties
	GetProp(..)
	GetPropE(..)
	SetProp(..)
	EnumProp(..)
	EnumAllProp(..)

	DME Methods
	Home()
	IsHomed()
	EnableUser()
	DisableUser()
	IsUserEnabled()
	OnPtMeasReport(..)
	OnMoveReportE(..)
	GetMachineClass()
	GetErrStatusE()
	GetXtdErrStatus()
	Get(..)
	GoTo(..)
	PtMeas(..)
	Information for Tool Handling
	Tool()
	FindTool(..)
	FoundTool()
	ChangeTool(..)
	SetTool(..)
	AlignTool(..)
	GoToPar()
	PtMeasPar()
	EnumTools()
	Q()
	ER()

	CartCMM Methods
	SetCoordSystem(..)
	GetCoordSystem()
	GetCsyTransformation(..)
	SetCsyTransformation(..)
	X()
	Y()
	Z()
	IJK()
	X(..)
	Y(..)
	Z(..)
	IJK(..)
	R()

	ToolChanger Methods
	Tool Methods (Instance of class KTool)
	GoToPar()
	PtMeasPar()
	ReQualify()

	GoToPar Block
	PtMeasPar Block
	A(), B(), C()
	A(..), B(..), C(..)

	Additional Dialog Examples
	StartSession
	Move 1 axis
	Probe 1 axis
	Move more axes in workpiece coordinate system
	Probe with more axis
	Set property
	Get, read property
	EnumAllProp

	Error Handling
	Classification of Errors
	List of I++ predefined errors

	Miscellaneous Information
	Coordination of company related extensions
	Initialization of TCP/IP protocol-stack
	Closing TCP/IP connection
	EndSession and StartSession
	Pre-defined Server events
	KeyPress
	Clearance or intermediate point set
	Pick manual point
	Change Tool request
	Set property request
	Additional defined keys

	Reading part temperature

	Multiple arm support
	Scanning
	Preliminaries
	Hints:
	OnScanReport(..)

	Scanning known contour
	ScanOnCircleHint(..)
	ScanOnCircle(..)
	ScanOnLineHint(..)
	ScanOnLine(..)

	Scan unknown contour
	ScanUnknownHint(..)
	ScanInPlaneEndIsSphere(..)
	ScanInPlaneEndIsPlane(..)
	ScanInPlaneEndIsCyl(..)
	ScanInCylEndIsSphere(..)
	ScanInCylEndIsPlane(..)

	Scanning Examples
	Scanning known contour circle
	Scanning unknown contour

	Rotary Table
	AlignPart(..)

	C++ and Header Files for Explanation
	A.1 \main\main.cpp
	A.2 \server
	A.2.1 \server\server.h
	A.2.2 \server\part.h
	A.2.3 \server\server.cpp

	A.3 \dme
	A.3.1 \dem\dme.h

	A.4 \cartcmm
	A.4.1 \cartcmm\cartcmm.h
	A.4.2 \cartcmm\eulerw.cpp

	A.5 \cartcmmwithrottbl
	A.5.1 \cartcmmwithrottbl\cartcmmwithrottbl.h

	A.6 \toolchanger
	A.6.1 \toolchanger\toolchanger.h
	A.6.2 \toolchanger\tool.h
	A.6.3 \toolchanger\toolab.h
	A.6.4 \toolchanger\toolabc.h
	A.6.5 \toolchanger\gotoparams.h
	A.6.6 \toolchanger\ptmeaspars.h
	A.6.7 \toolchanger\param.h

	A.7 Most important of lib
	A.7.1 \lib\axis.h
	A.7.2 \lib\eulerw.h
	A.7.3 \lib\tag.h
	A.7.4 \lib\ipptypedef.h
	A.7.5 \lib\ippbaseclasses.h

